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1 General outline

1.1 Introduction

On 13 May 1963 a treaty was concluded between the Kingdom of the Netherlands
and the Kingdom of Belgium concerning the connection between the Scheldt and the
Rhine. The treaty was ratified on 23 March 1965.

This connection comprises a navigable waterway which is connected near Zandvliet
with the Antwerp harbour system, then runs to the Eastern Scheldt, crosses the
latter in an approximately northerly direction, passes through the Eendracht, then
cuts through the Slaakdam and the Prins Hendrikpolder east of St. Philipsland and
debouches into the Krammer (figures 1 and 2).

The treaty stipulated that a system of locks should be constructed in the canal
section extending from the port of Antwerp to the Eastern Scheldt (figure 3). The
system of locks was called the ’Kreekrak locks’ from the tidal gulley that once
existed in this area. The lock system had to be designed in such a way that when it
was in use virtually no salt water would pass from the higher Antwerp Canal section
into the lower-lying fresh-water Zeeland Lake which would be created after the
closing of the Eastern Scheldt. A further requirement was that fresh-water loss should
be kept to a minimum in order to prevent salinization.

Unless precautions were taken the contents of the lock chamber, filled with salt
water when vessels passed through in the direction of the Zeeland Lake, would be
almost entirely discharged into it, and the locks would fill up with fresh water.

The fresh water would be lost when the locks operated in the opposite direction,
since being less dense it would spill like a nappe over the salt-water canal pound.
In the meantime, as a result of the government’s decision to close the Eastern Scheldt
by means of an opening dam, the situation has changed in that a fresh-water *Zeeland
Lake’ is not to be created, but a salt-water tidal basin is to be maintained.

However, compartmentalization is to be employed in the Eastern Scheldt.

No decision has yet been taken on the manner in which this is to be done; although
the compartment dams are to be so arranged that in any case the Scheldt-Rhine
connection will be situated in a fresh-water compartment — hereinafter referred to as
the *Eastern Basin’ — shut off from the tidal basin.

The need for an effective salinization-prevention system in the Kreekrak locks is
as great as ever, and perhaps acquires even greater significance, for owing to the
smaller area of the Eastern Basin it is much more susceptible to salinization than the
much larger Zeeland Lake.
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In order to eliminate salinization of the Eastern Basin near the locks on the Scheldt-
Rhine connection more or less completely, an exchange system is employed on which
very detailed hydraulic research has been conducted. From the design point of
view the appropriate system of filling and discharge implied a great deal of adaptation
and development. The chapters that follow give a detailed report on both the hydraulic
investigation and the design of the lock system.

1.2 General requirements

Initially the system was to comprise two locks having an effective length of 320 m
and a width of 24 m; the lock chambers have to be divided into two parts by an
intermediate lock.

The design had to allow for a third lock, which in the event of continuous operation
can be constructed if the capacity of two locks is no longer adequate.

A capacity of some 60 millions tons of cargo a year per lock is achieved.

The canal, which is also designed for pushed-barge traffic, requires a minimum
navigable depth of 5 m. This determines the sill level of the intermediate lock and
the lock on the Eastern Basin side at N.A.P. — 6.25 m and the level of the canal
lock at N.A.P. — 3.20, since a low-water level of N.A.P. — 1.25 is taken for the
Eastern Basin and the low-water level on the Antwerp Canal is N.A.P. 4+ 1.80 m.
Navigation in the direction of the Eastern Basin is in this case similar to the situation
at the Volkerak locks.

As long as the Eastern Scheldt is still open a high-water level of N.A.P. + 5.50
must be allowed for. But lock operation stops above N.A.P. - 3.00 m.

After the closing of the compartment dams the maximum level in the Eastern Basin
will be N.A.P. + 0.70 m. The water-level on this fresh-water lake is therefore liable
to vary by about 2 metres. The maximum water-level on the Antwerp Canal is
N.A.P. + 2.00 m.

It is not certain what kind of difference in density should be allowed for when the
final stage is reached with fresh water in the Eastern Basin and salt water in the
Antwerp Canal. For this reason the model tests were carried out taking density
differences of 3%/o0 to 12%/00

(do = 3 — 12 kg/m®).

It was specified for the lock complex that the salinization prevention system design
should not result in an unduly lengthy locking cycle.

The overall time for equalizing, emptying and filling the chamber for lock operation
in both directions should not exceed 24 minutes.

The forces generated by the exchanging of water to which vessels are subject should
not produce undue berthing stresses.



1.3 Lock systems suitable for the prevention of salt-water infrusion and fresh-water
loss at the Kreekrak locks

1.3.1  Requirements for the salinization prevention systems
The following requirements must be satisfied in the selection of the locking system:

a. The locking capacity had to be more or less the same as the capacity of the
Volkerak locks. Since the dimensions, which are adapted to the needs of pushed-
barge traffic, broadly correspond to the dimensions of the Volkerak lock, this means
that the part of the complete locking cycle carried out with gates closed (equalizing
in both directions and other operations) must be limited to about 24 minutes.

b. The amount of salt-water intrusion into the delta Iake must be kept as small as
possible, because discharging in the opposite direction demands a relatively large
fresh-water loss.

c. The fresh-water loss due to locking must be limited as far as possible.

The salt intrusion into the fresh section which occurs unless special precautions
are taken at the lock is caused by the locking water and exchange flow. The intrusion
of salt water due to the locking water can only be prevented by returning it to the
salt section, if necessary by pumping. The systems described below are possible ways
of reducing salt intrusion due to exchange.

Owing to a, alternatives such as rolling bridges, series of locks one behind another
etc. were unsuitable.

1.3.2  Air-bubble screen system

Figure 4 illustrates the principle of the air-bubble screen [1]. 1t consists in having a
perforated air line fitted to the sill of the lock gate at each lock entrance whereby
compressed air is teleased during the exchange flow phase.

When the lock gates are opened and the water level is the same, a current is created
by the difference in the density of the water on either side of the gate, resulting in
the salt water forcing its way under the fresh; being on top the fresh water will
replace the receding salt water. Theoretically at the smallest cross-section the flow
rate of fresh water alone (or salt water alone) is

| 8!/
1/43( 2,)eh % 2W.
(do/o is the relative difference in density, g = acceleration du to gravity, W = width,
h = water depth).
When the lock water volume is V, after time T = 4v / g(A(’ / Q) ghsgl/ W,

the entire chamber will be exchanged, i.e. the water in the chamber will then have
been replaced by water from the adjoining canal pound.
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Figure 4. Air-bubble screen: flowpattern in homogeneous condition and working
as a barrier.

Actually the time will be somewhat longer, while in addition there is always a residue
of the original water as a result of mixing.

By the releasing of air bubbles, preferably at the narrowest cross-section whers
water velocities are maximum water from the undercurrent will be entrained upwards,
while a countervailing current from the top layer flows downwards. The vertical
currents cause water particles to flow in the opposite direction. The requisite acce-
leration forces can be converted to a shear resistance between the layers. Conse-
quently, the air bubbles increase the shear resistance roughly in proportion to the
air flow rate. Hence the exchange time is lengthened. Figure 5 illustrates how the
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Figure 5. The effect of the air-bubble screen.

quality of the water in the chamber alters as a function of time for various air dis-

charge rates. The time is related to a reference time T in which theoretically the

chamber should be exchanged.

Since in homogeneous water conditions an air-bubble screen produces surface

velocities directed away from the screen, this, combined with the natural exchange

occuring in salt and fresh water flow, means that on one side of the screen the two

currents retard each other, whereas on the other side the current is in fact accelerated.

This is an additional drawback especially for small vessels and at low speeds.

The above, together with figure 5, shows that:

— air-bubble screens effect a reduction in the volume exchanged, provided the gates
do not remain open too long,

— the volume of water which is displaced by the entry and exit of vessels passes
through the screen in any case,

— there is additional mixing of fresh and salt water,

— circulation currents are created (this is a disadvantage when small vessels enter
at low speed),

— energy is required to compress the air in the line submerged at depth,

- the drawbacks to navigation are increased.

Previous experience has been acquired at the big lock of IJmuiden and at the Ter-
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neuzen locks. It shows that overall, when gate opening times are short, salinization
du to exchange can be halved. At the same time it must be accepted that entry and
exit must take place in quick succession. When the lock is not fully occupied this
results in longer waiting times.

Collection of the salt-water intrusion in a lock sump (enabling it to be discharged
separately) is less effective; owing to the resultant mixture some of the canal water
in the fresh-water pound will also be contaminated.

1.3.3  System of direct evacuation of the salt intrusion (Terneuzen system)

This system is used at the gates of the fresh-water canal pound. When circumstances
are such that when the water level between the chamber and the fresh-water pound
is the same and the gates are opened, the chamber is more or less salt. This depends
on the length of time the other doors have been open and whether air-bubble screens
have been used. When the doors are opened the fresh water tries to escape below
and again the salt intrusion described in A is created with a flow rate

Q= (e Jo{ o

By now evacuating at a rate equivalent to Q just past the gate, salt water can theo-
retically be prevented from travelling up the canal (figure 6).

However, owing to the passage of vessels, the salt water supply may vary and possibly
may not be evenly distributed across the width. This means that the rate of evacuation
must be adapted to the movement of vessels, even then there is a likelihood of fresh
water from the surface being drawn off along with the salt as a result of ,,short-
circuit” currents. For navigation this system means that vessels travel with water
velocities similar to natural exchange. A situation of this kind is more troublesome
than usual.

At the Terneuzen sea lock the system is used as follows: the evacuation rate is taken
roughly as Q for the period during which the natural drop is high enough to achieve

LOCK
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Figure 6. The Terneuzen system: selective withdrawal of salt
water intruded in the fresh water canal.
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this discharge rate. Behind the lock a deepened coltecting basin is used as a reserve
in which the excess salt can be stored. The salt can be evacuated selectively at low
velocity from this sump located at depth. By positioning the inlet at the lock gate
low, below the sill, the same aperture can be used for evacuating the salt intrusion
as well as emptying the basin. With this system virtually the entire contents V of the
lock chamber are discharged if the gates are left open for a fair length of time. Since
the contents are taken from the canal and are not compensated this volume of water,
plus the amount required to evacuate the basin, is therefore the fresh-water loss.
The fresh-water loss travels up the salt canal pound just as the lock gates on that
side are opened and a natural exchange is created. The system has been extensively
studied in a physical model at the Delft Hydraulics Laboratory. If the Terneuzen
system were used for the Kreekrak locks it should be possible to achieve a reduction
in fresh-water loss by forcing back the fresh chamber water to the fresh side of the
canal before the gates are opened on the salt canal side. This could be done by pump-
ing salt water along the bottom into the bottom of the chamber and withdrawing
the fresh from the surface by means of the gate or high-positioned parallel conduits.
Whether this is an attractive proposition depends inter alia on the quality of fresh
water recovered; when the salt intrusion is evacuated a salt residue may be left in
the chamber.

1.3.4 System of complete lock-chamber exchange with the chamber sealed off
(Dunkirk system)

The cardinal feature of this system is that the lock gates on the fresh-water side of
the canal must be opened until there is no salt water left in the chamber. All the salt
water is therefore first discharged or pumped out. In order to keep the vessels afloat,
fresh water is brought in at the same time. Steps must be taken to keep the layers
of water stable (salt below, fresh above) so as to reduce the amount of mixing that
occurs, and the fresh water must be introduced in such a way that no turbulence
or jet effect results. Furthermore, the entire process must take place fairly evenly
along the entire length of the chamber, since otherwise wave effects would be produced
at the interface, preventing all the salt water from being evacuated at the same mo-
ment by which also fresh water will be taken away, with moreover the result that
the exchange process would take too long.

This gives a system in which the salt water is withdrawn from the chamber floor
through perforations along its entire length and the fresh water is introduced as
high as possible (yet below the free water level) by means of fresh water conduits
along the entire chamber wall (figure 7).

The amount of water returned to the salt pound through the floor, and consequently
the amount withdrawn simultaneously from the fresh pound, is at least equivalent
to the entire chamber volume; also the locking water has to be pumped back to the
salt pound if it is on a higher level. Additional fresh water has to be brought in if

12
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during the process there is so much mixing that the mixture has to be removed to
the salt pound.

Vessels can enter and leave without currents being present. Unless precautions are
taken in locking vessels back to the salt pound, there is a fresh-water loss equivalnet
to the chamber capacity, as in the Terneuzen system.

In order to limit the loss the same procedure as described in the Terneuzen system
could be used here, i.e. salt water is brought into the bottom with the gates closed.
while fresh water is simultaneously removed from above through the walls.

For this purpose the already existing system with a performated floor and high-
positioned fresh-water inlets along the entire length of the chamber wall can be used
(figure 7). In this case also the effectiveness of fresh-water recovery is determined
by its quality, i.e. whether too much salt will be let in into the fresh pound as a result
of mixing.

The drawback to navigation is the loss of time due to the need to exchange not only
the locking water but also the entire chamber before the gates can open.

The system was first used for a lock at Dunkirk, the design being supplied by the
SOGREAH Laboratory in Grenoble, where a detailed model investigation was also
conducted [2]. We were able to make use of the complete research report and engin-
eering drawings supplied by SOGREAH and Ponts et Chaussées in evaluating the
various systems.

Figure 8 illustrates the engineering of the lock at Dunkirk.

FRESH WATER CULVERTS FRESH WATER CULVERTS
TQO SOUTH END INTAKE

PERFORATED _FLOOR

& FRESH WATER
SALT WATER

SRS
NN

SALT _WATER CULVERTS

TO NORTH END PUMPS
CROSS SECTION

IPHONS CONNECTING LOCKCHAMBER T0 HALF SECTION AT FRESH WATER__
FRESH WATER CULVERT | CULVERT AND SIPHON_LEVEL
FRESH WATER CULVERT LOCK CHAMBER PERFORATED PLATES

FRESH WATER

) Lo O o o [ O I i, H__A';Egm SALT WATER

FRE WATER INTAK B
w/”/" ! A—
y S PUMP SUPPLY
FRESH WATER ONE-WAY INLET LOCK FILLING AND F i__l __BASIN
VALVE (WITH LOCK) | EMPTYING DUCTS REVERSIBLE PUMPS

HALF SECTION AT LOCK FILLING
AND_EMPTYING DUCT LEVEL

SYSTEM OF THE DUNKERKE LOCK

Figure 8. The Dunkirk lock system.
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Table I. Comparison of alternative methods of salinization prevention
per locking cycle no action air-bubble Terneuzen Dunkirk
(i.e. up and down) taken flow (constant-rate removal programme and
fresh-water recovery)
salinization 1.0V 05V 0 except when vessels pass 0
fresh-water loss 08V 05V 14to 1.8V 04V
volume of water — 0.2 V (locking 19t023V 1.0V
pumped water)
effect of vessels on — return current largely due to vessels passing — can be largely due to vessels
mixing due to change from vessels helped by adjusting waiting time berthing in the lock chamber
passing
time for equalization 15 min. 15 min. 18 min. approx. 24 min.
+ exchange
waiting time due to 0 0 0 unnecessary
vessels passing (if vessels do not exit at once the quality of
water recovered improves)
overall time 15 min. 15 min. 18 min. approx. 24 min.

(equalization, exchange
and waiting time)

safety

fixed programme

fixed programme

flow rate dependent on density difference.
Any reduction in salt-water loss and
salinization due to vessel movement by
means of programming is undesirable on
safety grounds

fixed programme adapt to
circumstances

additional hindrance
to navigation

exchange current
when sailing

exchange +
bubble current
when sailing

exchange currents when sailing

transverse forces on berthed
vessels

V = Volume of chamber between Antwerp Canal level and Zeeland Lake sill level.




Since know-how was available in the Netherlands on air-bubbte screens as wett as
the Terneuzen system, and the results of the DUNKIRK model investigation were
likewise available, the systems could be compared overall with each other. In addition,
further tests were conducted at the Hydraulics Laboratory in Delft for both systems
on very approximate physical models.

Table I gives the various factors which enter into the projected construction of the
Kreekrak locks. Conditions are such that the salt pound is always higher than the
fresh, so that when salt water is removed from the chamber, pumping must be
resorted to when this water is brought back into the salt canal. All the data available
at the time the system was selected were used in compiling the table. These inclused
a preliminary investigation of the Dunkirk system with a view to possible application
for a small lock on the Voorn Canal near Rotterdam.

A separate investigation was carried out for the overall evaluation of the Terneuzen
system to supplement the already available data on the Terneuzen sealock itself, and
to determine where mixing occurs between the layers and whether the amount of
mixing is low enough to make the recovery of the fresh chamber water just feasible.
When the figures are compared it should be observed that the quantitative estimates
are very approximate, and that fresh-water losses in the Terneuzen system are very
large, since the discharge rates in the tests were not adjusted for the effect of vessels
passing through, but an excess was allowed for such that, even with ships passing
through, no salt water would get into the fresh-water canal.

The table shows that the Dunkirk system is the more economical one as far as water
is concerned. Capital expenditure is the same as for the Terneuzen system. No ade-
quate answer has yet been found to the question as to whether in the case of these large
locks the entire process of filling and emptying and the exchange between salt and
fresh water and vice versa could be achieved in a reasonable time with the Dunkirk
system. On the basis of the preliminary investigation carried out it was decided to
conduct a systematic investigation on a model reproducing the design of the entire lock
and enabling complete programming of the valves and vessels using the system. The
model was based on a design using the closed-gate exchange system (Dunkirk system),
but also included facilities for implementing the Terneuzen system in order to deter-
mine whether, by selecting a discharge-rate programme more suited to vessel move-
ments, much better results could be achieved than those shown in Table 1.
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2 Design and hydraulic investigations

2.1 Design of the Kreekrak locks (Dunkirk system)

The Kreekrak locks were designed in close conjunction with the model investigation.
Design and investigation exercised a clear influence on each other, with the participa-
tion of various departments of the Netherlands ministry of water control (Rijks-
waterstaat), the Delft Hydraulics Laboratory and, in view of the international liaison
involved, three Belgian engineers.

The Kreekrak locks, constructed in accordance with a salt and fresh-water exchange
system with gates closed, differ in many respects from a conventional lock design.
Essentially these differences boil down to the following:

a. The locks are double-bottomed. Under each lock there is a culvert for salt-water
supply and removal. The lock is separated from the culvert by a perforated floor;
the floor is designed to ensure proper distribution of the flow.

b. The salt-water culvert under the lock is connected by means of supply conduits
with an intake on the Antwerp canal for the purpose of filling the lock.

c. For emptying purposes the salt-water culvert is connected by means of discharge
conduits with an outlet to the storage basin.

d. A storage basin has to be constructed to accommodate the salt water removed,
the alternative of direct pumping appeared to be uneconomic due to the high peak
discharges. The water level in the basin must be kept lower than the level on the
Eastern Basin.

e. In order to maintain the water level in the storage basin a pumping station has
to be constructed to return the salt water to the canal.

f.  Wall openings which are vertically adjustable and can be sealed off must be
provided along the entire length of the chamber for the supply and removal of fresh
water from the Eastern Basin.

These apertures, which are positioned near the top, must be vertically adjustable
owing to the variations in water level on the Zeeland Lake, whereas the locks are not
similarly constructed; the basins outside the locks are in open connection with the
Eastern Basin and constitute the surrounding fresh water (photo 1).

The locks have a basically trough-shaped section and steel foundations.
The deep floor and walls are largely constructed of reinforced concrete.
In order to secure proper distribution of the vertical salt-water movement along the
entire lock bottom, use was made of an intermediate floor having a high pressure
resistance between the lock chamber and the salt water floor drain. This drain for the

17




Photo 1. The Kreekrak locks with the surrounding fresh-water Eastern Basin.

supply and removal of salt water was laid under the lock chamber proper in order to
obtain the shallowest possible foundation level. The nature of the ground is locally
such that a load-bearing layer suitable for building on without piles is not found
above N.A.P. —14 m (figure 9). This level was achieved by means of the construction
method described above.

The intermediate floor between the drain and the chamber has only 1.3, apertures;
the resultant high resistance provides good flow distribution along the entire floor
surface in both directions. A draw-back of this device is the high current velocity
during exchange produced by the big drop: unless precautions are taken, too much
fresh water is entrained in consequence to the floor drain, while salt water is left
behind in the chamber.

Conversely. the entrained fresh water is never returned, while the vertically rising jet
of salt water produces too much mixing.

These problems can be prevented by fitting baffles under as well as above the floor
perforations (figure 10).

The alternative shown at the top of figure 11 was the one originally intended for the
design, but a much simpler design (illustrated at the bottom of figure 10) was put into
practice: the shape of a prestressed concrete girder provides the requisite baffle on

18



100 150 *sem? both sides of the holes in the floor beams,
- I while the design height is kept very low.
I P B The shaped beams were prefabricated.
T T Every beam was prestressed with high-
S tensile steel and manufactured in ac-
) cordance with the bench system. The
- prestressing is 200 tons for each beam.
The intermediate floor was construc-
o ted by assembling the beams and sea-
© _BOTTOM OF Lock. ling the joints with rubber strip (figures
10, 11, 12 and photo’s 2 and 4).
- o The bottom culverts, divided into two
i T S parts by the intermediate gate to serve
the two lock parts, are supplied by means
of amply dimensioned conduits from the
Antwerp Canal. These enable the con-
tents of the chamber to be exchanged
SAND in a very short filling time whatever the

E=Srear  IESTORILNG AND SOUNDING. circumstances, using the natural drop
CLAY
between the canal level and the Eastern
Figure 9. Results of test drilling. Basin.

The flow rate is controlled by means
of a set of three valves per lock at the intake (photo 5).
The valves are designed in such a manner as to provide the maximum possible
tightness in order to prevent salinization (figure 13).
The salt water is evacuated from the chamber using the drop as well; the water is
discharged into a 40-hectare storage basin whose level is kept sufficiently low by
means of a pumping station (see figure 3). Here too three conduits per lock are
available.
The flow rates are likewise controlled by means of valves. These valves are installed in
the sluiceway. Here again great care has been taken to ensure a watertight seal. The
outlet conduits for a future third lock have to be constructed already at this stage as
far as the section below the lock system under construction is concerned.
Figure 14 and photo 6 and 7 illustrate the conduit system and sluiceway.
Discharge into the storage basin referred to above is essential to avoid the necessity
of pumping the very large amounts of water discharged from the lock straight into
the Antwerp Canal. The discharge rate is about 100 m3/s per lock.
The locks discharge abruptly into the basin within a short time, and then the water
is returned to the Antwerp Canal by the pumping station operating almost con-
tinuously at a maximum throughput of about 40 md®s when traffic is heavy.
Stoppage of the pumping station can be made good for several hours by keeping the
level of the basin fairly low.
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Figure 10. Floor perforations with and without baffles.

Owing to the cross-current on the canal caused by the pumping station, a detailed
model investigation was required to find a satisfactory solution for navigation.

The investigation also embraced current movement in front of the inlet system. Here
too safe conditions for navigation were created by adaptation of the protective frame.
Fresh-water supply and removal has been achieved without conduits.

Both locks are completely surrounded by the fresh-water Eastern Basin; this has
resulted in ,,short-circuiting” between the chamber and the fresh-water basin being
prevented only by the chamber walls (photo 1). For a proper distribution of fresh-
water supply and removal an elongated aperture had to be provided on the outside
of the lock on a level with the Eastern Basin (figure 15). The aperture had to be made
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HOLES c.t.c.138
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HOLES c.t.c.69

SEE FI1G.13

SELECTED MODEL

Figure 11. Alternative type of chamber floor with the version selected.

with as few interruptions as possible on both sides of the chamber at a level of 0.75 m
directly below the surface of the water (photo 8).

The entire system is mounted above platforms along the walls. On the outside of the
lock there are valves which provide the requisite aperture depth of 0.75 m, for on
account of the variation in the level of the Zeeland Lake the overflow edge must be
adjustable. The wall aperture recedes very considerably at the back in order to make
the chamber valves as small as possible (figure 16), thus necessitating heavy columns
between the apertures in order to support the superstructure.

Each wall aperture has two operating valves which act as standby to each other. By
the use of emergency valves the valve rails can be drained and inspected. In the
design of the valve system a great deal of precast concrete was used for the stops and
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valve rails (photo’s 9, 10 and 11). This
was necessary in order to produce the
particularly complicated shape of this
part of the walls,
At the same time a better quality of con-
crete was achieved by the use of such ma-
terial for a number of important com-
ponents. An engine house recess was
constructed to accommodate the lock-
opcrutingmuchincry.\\'hilcthcuul[apcr-
tures on the chamberside are protected
against damage by vessels by means of a
" SLLMEEN. PERFORATED FLOOR SEAMS heavy wooden frame.
Figure 12. The joint between two beams, The structure, which is built in sections,
can if necessary be quickly replaced (fi-
gure 17 and photo 4). The top of the engine house recess forms part of a carriageway
covered with non-skid material and fitted with a robust guard rail to prevent cars etc.
going into the water.
Since the navigation clearance is limited to 9.10 (the same as on the Rhine) lifting
steel gates were selected as a locking device because they allow vehicular traffic to

wed from the bottom drain,

Photo 2. The perforated floor vie




Photo 3 Detail of floor beam

cross: furthermore, in relation to the effective locking length specified. the lock
chamber was made as small as possible, thus keeping the contents of the chamber
and the associated salt contamination and fresh-water losses to a minimum.
Despite the gantries, the cost of these gates is also lower. They are cheaper than mitre
gates, since owing to the reversal of the drop — as long as the compartment dams
still have to be closed and the lake is a tidal salt water area — two sets of mitre gates
would be required at each entrance.

..Dripping” is a drawback of lifting gates. which attempts will be made to prevent

by means of guttering.

()
"



Photo 4. The perforated floor under construction. The figure also clearly illustrates the design
of the guide frame in the lock wall.

Photo 5. The two inlets on the Antwerp Canal side.

The longitudinal section given in figure 18 shows that the lock chamber is divided
by means of an intermediary gate positioned asymetrically into two chambers, one
about 210 m and the other about 105 m long. Both chambers can be filled separately
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Figure 13. Design of the inlet valve.
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Figure 14. The conduit system of the Kreekrak locks.
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Photo 6. The conduit system under construction.

Photo 7. The sluiceway viewed from the storage basin.
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Figure 15. Cross-section of lock chamber.

by means of conduits. This makes it possible to use the complete system also when

traffic is light.

This asymmetrical arrangement was adopted to enable the lock to aecommodate a

pushed train of four barges in the long section of the chamber.

By the location of the locks northwards, out in Eastern Scheldt so to speak, they have

been kept away from the bridges that are to be built for rail and road traffic between

Bergen op Zoom and Flushing (figure 2).

This has saved an appreciable amount of construction time, and no valuable agri-

cultural land had to be purchased for the system.

A number of non-residential buildings will be located at the locks to accommodate

the administrative and maintenance staff as well as the State police and customs

(figure 19). |
The locks are centrally operated. A detailed operational investigation has been carried
out for this purpose.

The central operations building is located on the water in the centre of the system.
The location of the operations room at about N.A.P. + 20 m provides the operations
staff with a good vantage point.

A convenient operating console has been designed, partly as a result of research on
the physiology of the sense organs (photo 12). A great deal of attention has been paid
to accessibility. Despite the water surrounding the locks, both sides of the chambers
and the central operations building are accessible by car: a sensible arrangement from
the safety point of view, as the fire brigade and ambulance must not be forgotten.
Outside the locks waiting berths and guidingstructures are planned on either side.
Years of experience are available on such installations.
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salt water
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Photo 8. Change-over from salt to fresh water in a cross-section
model.

A recent investigation showed the optimum lay-out for waiting berths as illustrated
in figure 19.

By widening the channel between the waiting berths on either side of the centre line
of the locks as the distance from the lock increases, the nuisance to waiting vessels
caused by ships sailing out is diminished. The nuisance is greater if the ships start to
sail faster, which ought to be possible in order to get the maximum locking capacity.
The increasing nuisance due to vessels picking up speed is neutralized as the distance
gets greater.

About 250.000 m? of reinforced concrete and more than 5.000 m® of prestressed
concrete is required for th¢ construction of the locks.

From the designers point of vue the locks are attractive particularly because of the
combinations of prestressed, reinforced and precast concrete.

Photo’s 13 and 14 give a general view of the lock system just before flooding. The
concrete work is finished.
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CROSS-SECTION A-A CROSS-SECTION B-B CROSS-SECTION C-C

Figure 16. Cross-section of apertures in the lock chamber wall.

Photo 9. A stage in the construction of the lock system, illustrating mainly the wall structure.
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Photo 10. Wall construction using precast concrete components.
2.2 Hydraulic investigations on the Dunkirk system

A particularly large number of design and operational details had to be resolved in
designing the locks in accordance with the system of exchange with gates closed. As
already stated in Chapter 2.1, a team was engaged on these problems throughout the
entire design and investigation phase.

The entire project was investigated at the Delft Hydraulics Laboratory using a model
(scale 1:30) of a single lock with about 1 km of canal section on the fresh-water side
and about 0.5 km on the salt-water side. The model reproduced in detail the lock
design, valve operation and vessel movement (with propeller effect).

The storage basin was not reproduced in the model. although the conduits and valves
connecting immediately with the basin were fully incorporated. Use was made of
existing rules of scale enabling the model results for homogeneous as well as stratified
(and mixed) salt-fresh flow to be translated into actual values. Virtually all kinds of
test were carried out in the model, including the appropriate vessel movements with
propellers rotating so as to involve all the mixing factors as completely as possible
in the investigation. Photo’s 15 to 18 inclusive convey an impression of the lay-out
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Photo 11. The lock wall illustrating the recessed engine house. The valve slots are clearly visible

on the floor.




of the model, the salt-gauging equipment, the valve-programme control and the
arrangements for measuring the berthing stresses.

A series of approximate models was also used to determine separately the smallest
permissible scale.

Since the model described above was very complicated, and since furthermore
components such as the culvert capacity, the design of the perforated floor, the walls
etc. were troublesome to alter, a large number of detail study models were built and

F ) CROSS-SECTION A-A

CROSS-SECTION B-B

Figure 17. Design of the wooden guide frame.
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calculations made in order to ensure
that from the design point of view the
overall model was the best possible, and
thatit would mainly be used to study the
optimum operation of the lock and the
efficiency attainable.

DETAIL STUDY

The maindetails to be technically studied
were as follows:

a. The way in which an even flow-rate
distribution is achieved along the cham-
ber when salt water is supplied and re-
moved through the floor as well as when
fresh waterenters and leaves through the
wall. A separate model (scale 1:10) was
Photo 12. Control panel. used to determine the rate of removal

through floor perforations with long-
itudinal flow in the bottom culvert, and the pressure distribution along the culvert can
be computed for the case where water is drawn off and supplied at the sides. As
already stated in chapter 2.1. this study resulted in a chamber floor having uniformly
distributed perforations equivalent to 1.3%, of the floor surface, and a (modified)
system of fresh-water supply: large open culverts which produced the feature of
fresh-water enclosing the locks.

b. The walls and floor must be designed in such a way that when the chamber is
exchanged from salt to fresh water and vice versa as little mixing as possible occurs,
even when vessels are present.

Mixing occurs especially where water is brought in. A jet effect was created which
initially shot through the salt-fresh interface (actually there is no definite stratification
in the initial stage),

The jet effect is aggravated by the desirability, in order to achieve the uniform flow
distribution referred to in a., of small apertures having locally high velocities. Mixing
due to the jet effect can be inhibited by first directing the jet against a wall; a great
deal of kinetic energy is then absorbed and the water is dispersed over a larger section.

This principle was applied in the case of the floor as well as the walls, although an
adjustable valve was also fitted to the wall in order to supply or remove water as far
up as possible in a selective manner owing to the variable level of the Eastern Basin.
It was found that the presence of berthed vessels also reduces mixing at the wall,
although the flow distribution along the wall from one end of the chamber to the
other becomes less uniform. These phenomena were studied in models (scale 1:30)
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of a short chamber section and also a larger-scale model (1:5) using a single-floor
perforation.

¢. The design of the culvert and wall valves must be such that when closed they
afford maximum tightness yet the valves must be easy to operate and very reliable.
Sliding valves were used as wall valves: they are operated when the water levels are
virtually the same in order to eliminate current forces.

Wheel-mounted valves were used in the conduits in order to reduce the lifting effort
required under full water pressure. In order to provide a proper seal a continuous
rubber ring was fitted on the frontal plate of the valve to rest on the conduit seat.
Before it is raised the valve is first released from the seat (against the direction of flow)
in order to prevent damage to the ring as it is being raised (figure 13). Theoretical
calculations showed that a valve of this kind was liable to vibrate, and a separate
model (scale 1:15) was constructed for the purpose of developing the optimum valve
design (photo 19). It was found that for the design and rigidity selected the valve must
be disengaged at least 15 mm (excluding flexure) in order to prevent violent vibration.

Photo 13. General view of the Kreekrak lock system just before the flooding of the construction
site. The concrete work has been completed. The forebays are being dredged to the
requisite depth.
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The discharge characteristics of the valve were also determined accurately from the
same model. These were used in turn in the calculation of the valve-opening pro-
grammes.

d. The design of the sluiceway of the emptying conduits into the storage basin
(photo 7): the weight of the protection layer on top of the soil must be optimalized
in relation to the grille fitted downstreams of the sluice valves. This was studied in a
feature model (scale 1:30).

e. ..Overtravel” can occur in a lock having long conduits. This means that when
the lock fills when there is a natural drop the upper pound — conduit — chamber
become a system of communicating vessels where surging to and fro is possible. In
that case the gates must not be opened. The extent to which the culvert valves must
kept closed to damp out the oscillation in order to limit overtravel has been determined
from calculations.

f. The design at the outlet of the pumping station was studied on a model of the
Antwerp Canzl to a scale of 1:25, although at a much later stage than the other
investigations discussed.

Photo 14. The lock chamber completed.
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Photo 15. Overall model to a scale of 1:30, showing the perforated

floor, the wall valves and the lifting gate.

I'he overall model was completed in the meantime, after many of these points had
been solved in principles, and a start was made on the determination of the optimum
operating programme and the efficiency of the salinization prevention system.

OPTIMALIZATION OF THE OPERATING PROGRAMMI

A vast range of options is available for determinating the optimum operating
programme.

1. A constant flow rate can be used in the salt to fresh-water exchange phase, or
the flow rate can be restricted when the intake of fresh water commences, as this is
the most critical moment as far as mixing is concerned. At all events, a reduction in
flow rate at a particular moment implies that in order to maintain the same duration
of the locking cycle the flow rate is increased for the remainder of the time, while
rapid fluctuations in the flow rate can produce translation waves detrimental to
navigation as well as undulation at the interface.

It was found that there was really nothing to be gained by ..programming™ the
flow rate.



2. Ultimately the efficiency of the salinization prevention system must be determined
in terms of the quantity of salt water entering the fresh-water section related to the
amount of fresh water withdrawn therefrom. The loss of fresh water serves to evacuate
the mixed layer in the change-over from salt to fresh and to compensate the top layer
of fresh water which can not be recovered in the change-over from fresh to salt, since
in that case too much salt would be entrained. The greater the quantity of fresh water
that can be withdrawn from the fresh section. the more effective salinization preven-
tion will be.

Fresh-water losses can be limited in the following ways:

a. By pulling the salt layer further than usual through the perforated floor, which
gradually improves the quality of the fresh chamber water so that when the gates are
opened not much salt gets into the pound. Furthermore, ships entering and leaving
will stir up less salt from the bottom drain.

b. By stopping fresh-water recovery sooner so as not to recover water of too poor
a quality. In assessing this we must remember that if smaller quantities of water are
pumped in the time available, the flow rates, and consequently mixing as well, will
be reduced.

Photo 16. Overall model; vessel(s) entering the chamber.




Photo 17. Owverall model;
gauging the forces acting on
a vessel in a pushed-barge
train,

The alternative which ultimately proved to be best for all conditions, both with and
without vessels and for the likely variable salt content in the Antwerp Canal (the
difference in density between salt and fresh water in the tests ranged from 3 to 12%,
of the density of fresh water: for the sake of comparison, the sea water in the North
Sea is 30% denser), showed that the best course is to remove the theoretical salt limit
as far as the perforated floor, and in fresh-water recovery not to exceed the limit
compatible with the available fresh-water supply. In any case recovery is found to be
possible only until the interface reaches the bottom of the vessel with the deepest
draught: immediate therealter salt water is entrained from under the vessel.

The amount exchanged when the chamber changes over from salt to fresh is therefore
smaller than in the reverse process; since the flow rates are also lower, the locking
times differ to some extent in opposite directions.

3. The optimum position of the valves which, rising and falling with variations in
the level of the Eastern Basin, ensure that the fresh water is supplied or withdrawn
as far up as possible. is found to be 0.75 to | m below the surface.

4. The operating regime of the conduit valves must be determined in relation to

the permissible stresses of the vessels berthed in the chamber. The maximum permissible
opening rate for the filling valves was found to be 15 mm/s.
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The emptying valves, which are somewhat narrower and higher, can be operated at
20 mm/s. When the emptying valves are closed the wall apertures must be open in
order to reduce translation waves: this will frequently be the case anyhow.

Ultimately the efficiency of salinization prevention can be summarized in figure 20,
where the salt intrusion (expressed as the percentage of undiluted salt water in the
contents of the chamber between the perforated floor and the Antwerp Canal level)
is plotted against the fresh-water loss. Although the results in the case of small density
differences show an appreciably larger salt intrusion, expressed in terms of salt water
volume. the amount of salt intrusion is in fact appreciably smaller. It was to be
expected that the quantity in terms of volume would be greater, since the entire
system depends on stratification of salt and fresh water; as the density differences
decrease this tends to be less and less the case, and turbulence and other factors which
cause mixing will predominate increasingly.

2.3 Comparison of the Dunkirk and Terneuzen systems

As already stated, the overall model to a scale of 1:30 of the Dunkirk lock system
incorporated facilities for a detailed study of the Terneuzen system. The design of the

tunnel inlet used (photo 20) was selected on the basis of a comparative investigation

Photo 18. Overall model:
the low-gauging device and
programming panel for val-
ve operation.
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among ten or so alternative types. In order to determine the requisite discharge rate
the quantity of salt water which travels up the canal in a given unit of time was gauged
first. It was found to be somewhat less than the theoretical value given in Chapter 2.
Subsequently the quantity of salt water that could be removed through the suction
tunnel at various flow rates was examined in conjunction with the programmed entry
and exit of a pushed-barge train (4 barges, 10.000 tons) and several self-propelled
vessels.

After the vessel movements the quantity of salt water left behind in the chamber was
gauged. so that the remainder had entered the fresh canal pound.

Photo 19. 1:15 scale model for valve investigation purposes.

2.4 Conclusions

a. From the salt content of the water discharged it is not possible to find a reliable
indication on which to base the discharge rate programme in relation to vessels
entering and leaving: although an adjusted program can be established in the case of
a pushed-barge train if the speed and load factor are at all available.

b. The quantity of salt water left behind in the chamber after the doors are closed
is so large and distributed vertically to such an extent that there can scarcely be any
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Figure 20. Salinization in relation to fresh-water loss in the closed-gate ex-
change system.

question of fresh-water recovery; figure 21 gives a comparison of similar situations
for optimum operating conditions in the Dunkirk and Terneuzen systems.

For a small difference in density (3%00) the natural exchange discharge is lower,
and the removal rate can be made somewhat higher without excessive loss of water;
in this situation we find that the Terneuzen system is similar to the Dunkirk System
as long as sufficient fresh water is available to obviate the need for the recovery of
fresh chamber water in the Dunkirk system as well.
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In all other cases, greater relative density differences and/or economical fresh-water
management, the Dunkirk system is found to be more effective in preventing saliniza-

tion, with the result that this was the system definitively selected.

[T] sac[L T T |1

Ao - 3%, - 4P 282 -12%, - 82 3P0 . 3%, —o 4P : -

Salt contamination of the lockwater which can be regained at system ,,Terncuzen™ and system
»Dunkerque” (situation after the closing of the doors).

Figure 21. Comparison of the Terneuzen and Dunkirk systems.

Photo 20. Optimum design of the salt-water suction tunnel in the Terneuzen system.
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3 Programming of the lock

The main requirements for the programming of lock operation have already been
referred to in the preceding part. All the operations involved in locking traffic from
the Antwerp Canal to the Eastern Basin and vice versa are described below in
chronological order.

The assumptions on which the programming is based are as follows:

— The correct speeds for the raising and lowering of the conduit valves have been
definitively selected.

The adjustable chamber-wall valves that ensure selective fresh-water supply and
removal are adjusted, relayed to the level of the Eastern Basin (e.g. are checked
once a day).

The storage basin is sufficiently below the level of the Eastern Basin (the fresh water
basin), to ensure a minimum drop of 50 cm to the storage basin when salt water
is being removed.

3.1 Locking from the Antwerp Canal

(FOR DISCHARGE PROGRAMME SEE TOP OF FIGURE 22 AND LEFT-HAND SIDE OF
FIGURE 7)

I. Vessels from Antwerp enter, berth in the usual manner, and the lock gates are
closed, just as in any other lock, although the propellers have to be stopped.

II. The valves in the sluiceways running into the storage basin are opened; as soon
as the valve movement stops the discharge rate slackens off, since the chamber level
falls, and the basin rises a bit. Once the chamber level falls to the Eastern Basin level
the wall valves open and within a short time the rate of entry through the wall valves
is the same as the rate of exit at the bottom; the chamber is somewhat lower than the
Eastern Basin.

Comment: The flow rate used in changing over is made as low as possible in order
to limit mixing. If more fresh water is available, there is, for instance, no need to
recover fresh water, thus leaving more time for the change over from salt to fresh
and allowing a lower flow rate to be used. The flow rate during the change-over is
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Figure 22. Locking procedure in the Kreek- vessel and the wall is the first to fill with
rak locks. fresh water; at the bottom of the vessel

the fresh and salt-water pressure is the
same, and so at the top the fresh-water level is somewhat higher, The transverse
thrust disappears when the top chamber layer becomes fresh as far down as the
vessel’s draught.

IV. The sluiceway valves at the basin are closed, the moment of closing being
calculated in advance in such a way that when the valve is closed the interface has
just been drained down to the perforated floor. The wall valves are left open, perhaps
because in the rising phase fresh water is recovered, but in any case to attenuate
translation waves.

After the valves are closed the gates can be opened at once; owing to the slackening
flow rate the chamber level equalizes with the level of the Eastern Basin.

V. Vessels exit and enter; if the entire lock chamber has been used in locking vessels
from the Antwerp Canal, and if afterwards only the section of the lock chamber on
the Antwerp side is used to lock vessels in the opposite direction, it may be advisable
to fill the space under the perforated floor of the lock section which is out of use
with fresh water in order to limit salinization. To reach this a low evacuation rate
has to be used in order to maintain a stable interface under the floor, although vessels
may enter and leave in the meantime.
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3.2 Locking from the Eastern Basin

(FLOW RATE PROGRAMME AT THE BOTTOM OF FIGURE 22 AND ON THE RIGHT-HAND
SIDE OF FIGURE 7)

I. Vessels enter, berth in the usual manner, and the gates are closed. If fresh water
is recovered the propellers have to be stopped.

II. The inlet valves are opened until the requisite exchange flow rate is attained.
Although the vessels are inclined to move to one side these forces are very slight.
The flow rate remains constant until the salt water reaches the bottom of the vessels
with the deepest draught, and then the wall valves are closed.

This moment is computed in advance (according to the estimated draught).

III. The water level rises; as far as the salt-fresh interface is concerned it would be
possible to open the inlet valves fully. But they have to be kept about 259, open,
otherwise the rising chamber level would go too far above the Antwerp Canal level
due to the overtravel phenomena.

The gates may not be opened until the difference in water level on either side is slight.
For this purpose the permissible limit was taken as 10 cm; if it is greater, excessive
translation waves result when the gates are opened. Consequently, the gates can be
opened when the chamber level is within 10 cm of the canal level.

IV. Vessels exit and enter; since a fresh-water residue is left in the chamber when
the gates are opened it will flow into the Antwerp Canal after the canal is opened.
The vessels will not be greatly affected as a result.

As far as possible the operation of the locks is to be automatically controlled, with

the facility of processing data such as waterlevels, traffic density etc. on a control
computer.
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