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1 Introduction

Modelling of fluvial morphodynamic processes is a powerful tool not only to predict the future
state of a river after, for instance, an intervention or a change in the discharge regime (Blom
et al., 2017), but also as a source of understanding of the natural processes responsible for
patterns such as dunes, meanders, and bars (Callander , 1969; Seminara, 2006; Colombini
and Stocchino, 2012). A framework for modelling the morphodynamic development of alluvial
rivers is composed of a system of partial differential equations for modelling the flow, change
in bed elevation, and change in the bed surface texture. The Saint-Venant (1871) equations
account for conservation of water mass and momentum and enable modelling processes
with a characteristic length scale significantly longer than the flow depth in one-dimensional
cases. The Shallow Water Equations describe the depth-averaged flow in two-dimensional
cases. Conservation of unisize bed sediment is typically modelled using the Exner (1920)
equation and, under mixed-size sediment conditions, the active layer model (Hirano, 1971)
accounts for mass conservation of bed sediment of each grain size.

Although widely successful in predicting river morphodynamics, a fundamental problem arises
when using the above framework. Under certain conditions the description of the natural phe-
nomena is not captured by the system of equations, which manifests as an ill-posed model.
Models describe a simplified version of reality, which allows us to understand the key ele-
ments playing a major role in the dynamics of the system one studies (Paola and Leeder ,
2011). Major simplifications such as reducing streamwise morphodynamic processes to a dif-
fusion equation allow for insight on the creation of stratigraphic records and evolution on large
spatial scales (Paola et al., 1992; Paola, 2000; Paola and Leeder , 2011). There is a difference
between greatly simplified models and models that do not capture the physical processes. A
simplified model reproduces a reduced-complexity version of reality (Murray , 2007) and it is
mathematically well-posed, as a unique solution exists that depends continuously on the data
(Hadamard , 1923; Joseph and Saut , 1990). An ill-posed model lacks crucial physical pro-
cesses that cause the model to be unsuitable to capture the dynamics of the system (Fowler ,
1997). An ill-posed model is unrepresentative of a physical phenomenon, as the growth rate
of infinitesimal perturbations to a solution (i.e., negligible noise from a physical perspective)
tends to infinity (Kabanikhin, 2008). This is different from chaotic systems, in which noise
similarly causes the solution to diverge but not infinitely fast (Devaney , 1989; Banks et al.,
1992).

An example of an ill-posed model is the one describing the dynamics of granular flow. The
continuum formulation of such a problem depends on deriving a model for the granular viscos-
ity. Jop et al. (2005, 2006) relate viscosity to a dimensionless shear rate. The model captures
the dynamics of granular flows if the dimensionless shear rate is within a certain range, but
otherwise the model is ill-posed and loses its predictive capabilities (Barker et al., 2015). A
better representation of the physical processes guaranteeing that viscosity tends to 0 when
the dimensionless shear rate tends to 0 extends the domain of well-posedness (Barker and
Gray , 2017).

Under unisize sediment and one-dimensional flow conditions, the Saint-Venant-Exner model
may be ill-posed when the Froude number is larger than 6 (Cordier et al., 2011). As most
flows of interest are well below this limit, we can consider modelling of fluvial problems under
unisize sediment conditions to be well-posed. This is not the case when considering mixed-
size sediment. Using the active layer model we assume that the bed can be discretised
into two layers: the active layer and the substrate. The sediment transport rate depends on
the grain size distribution of the active layer. A vertical flux of sediment occurs between the
active layer and the substrate if the elevation of the interface between the active layer and the
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substrate changes. The active layer is well-mixed, whereas the substrate can be stratified.
The above simplification of the physical processes responsible for vertical mixing causes the
active layer model to be ill-posed (Ribberink , 1987; Stecca et al., 2014; Chavarrías et al.,
2018). In particular, the active layer is prone to be ill-posed under degradational conditions
into a substrate finer than the active layer (i.e., an armoured bed (Parker and Sutherland ,
1990)) for any value of the Froude number.

Chavarrías et al. (2019b) devised a regularization strategy to guarantee that the active layer
model is unconditionally well-posed. The strategy can be classified as a preconditioning tech-
nique (Turkel , 1999) and is based on modifying the time scale of mixing processes. Chavar-
rías et al. (2019b) proved that, under conditions in which the active layer model is ill-posed,
the system is regularized by sufficiently slowing down the mixing processes. The physical
interpretation of the strategy is that the active layer model is ill-posed when it becomes inca-
pable of capturing fast mixing processes occurring in nature under the conditions in which the
model is ill-posed. The slow down of the mixing processes implies an increase in the time
scale under consideration. Worded differently, the time scale over which the model variables
are representative of the conditions of the bed is increased.

Chavarrías et al. (2019b) tested the results of the regularization strategy against data from
laboratory experiments and confirmed that the regularized active layer model captures the
behavior of the system averaged over the passage of several bedforms causing fast mixing of
sediment. Yet, the strategy was devised under one-dimensional conditions only. In this doc-
ument we propose a regularization strategy that guarantees that the two-dimensonal active
layer model is well-posed.

The document is organized as follows. In Section 2 we introduce the active layer model. In
Section 3 we propose two regularization strategies. In Section 4 we linearize the model to
be able to conduct a perturbation analysis in Section 5. Analytical results of the perturbation
analysis are described in Section 6. In Section 7 we discuss the implementation of the regu-
larization strategy in Delft3D. The results of applying the regularization strategy are shown in
Section 8. Recommendations and conclusions are found in Sections 9 and 10, respectively.

2 A Regularization Strategy for the Two-Dimensional Active Layer Model



2 Original Model Equations

In this section we describe the set of equations used in modelling mixed-size sediment mor-
phodynamic processes. In Section 2.1 we introduce the conservation equations and in Sec-
tion 2.2 the closure relations of the model.

2.1 Conservation Equations
In this section we describe the conservation equations of the model. In Sections 2.1.1 and
2.1.2 we introduce the equations accounting for changes in the flow and in the bed, respec-
tively.

2.1.1 Flow Equations
We assume that the vertical length and velocity scales are negligible with respect to the hor-
izontal ones. Another assumption is the fact that the concentration of sediment (the ratio
between the solid and liquid discharge) is small (below 6× 10−3 (Garegnani et al., 2011,
2013)), such that we apply the clear water approximation. Under these conditions, the flow is
described using the depth-averaged Shallow Water Equations (e.g. Vreugdenhil , 1994):

∂h

∂t
+
∂qx

∂x
+
∂qy

∂y
= 0 , (2.1)

∂qx
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( qxqy
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(
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(
∂( qy

h
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∂x
+
∂( qx

h
)

∂y

))
− ghSfy ,

(2.3)

where (x, y) [m] are Cartesian coordinates and t [s] is the time coordinate. The variables
(qx, qy) = (uh, vh) [m2/s] are the specific water discharges in the x and y direction, re-
spectively, where h [m] is the flow depth and u [m/s] and v [m/s] are the depth-averaged flow
velocities. The variable η [m] is the bed elevation and g [m/s2] the acceleration due to gravity.
The friction slopes are (Sfx, Sfy) [−] and the diffusion coefficient ν [m2/s] is the horizontal
eddy viscosity. The depth-averaging procedure of the equations of motion introduces terms
that originate from the difference between the actual velocity at a certain elevation in the wa-
ter column and the depth-averaged velocity. We separate the contributions due to turbulent
motion and secondary flow caused by the flow curvature. The contribution due to turbulent
motion is accounted for by the diffusion coefficient. The terms (Fsx, Fsy) [m2/s2] account for
the effect of secondary flow. These terms are responsible for a transfer of momentum that
shifts the maximum velocity to the outer bend (Kalkwijk and De Vriend , 1980), as well as for
a sink of energy in the secondary circulation (Flokstra, 1977; Begnudelli et al., 2010).

The integral value (along z) of the force per unit mass that the secondary flow exerts on the
primary flow is (De Vriend , 1977; Kalkwijk and De Vriend , 1980):

Fsx =
∂Txx

∂x
+
∂Txy

∂y
, (2.4)
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Fsy =
∂Tyx

∂x
+
∂Tyy

∂y
, (2.5)

where Tlm [m3/s2] is the integral shear stress per unit mass in the direction l-m. Assum-
ing a large width-to-depth ratio (i.e., B/h � 1, where B [m] is the characteristic channel
width) and a mild curvature (i.e., h/Rs � 1, where Rs [m] is the radius of curvature of the
streamlines), the shear stress terms are:

Txx = −2
β∗I

Q
qxqy , (2.6)

Txy = Tyx =
β∗I

Q

(
q2

x − q2
y

)
, (2.7)

Tyy = Tyy = 2
β∗I

Q
qxqy , (2.8)

where β∗ = 5α − 15.6α2 + 37.5α3 and I [m/s] is the secondary flow intensity, which is
the integral of the absolute value of the secondary flow velocity profile (De Vriend , 1981), and
Q =

√
q2

x + q2
y [m2/s] is the module of the specific water discharge.

The secondary flow intensity varies in space and time and it is modelled by means of an
advection-diffusion equation (Jagers, 2003). Chavarrías et al. (2019a) showed that the diffu-
sion coefficient of the transport equation of the secondary flow intensity is a crucial parameter
to guarantee well-posedness of the flow equations. They also showed that ill-posedness as
regards to modelling of the sediment mixing processes is independent from secondary flow
modelling and from the diffusion in the flow equations. Worded differently, ill-posedness due to
the active layer model is independent of ill-posedness due to secondary flow. For this reason,
as we are here concerned about regularizing the active layer model, we will not consider the
secondary flow intensity as a dependent variable of the model. This implies that we assume
that the effect of spatial and temporal changes in secondary flow intensity are negligible. Sim-
ilarly, we will neglect the effect of diffusion in the flow equations, as it has been shown to not
play a role in the well-posedness of the active layer model (Chavarrías et al., 2019a).

2.1.2 Morphodynamic Equations
We consider an alluvial bed composed of an arbitrary number N of non-cohesive sediment
fractions characterised by a grain size dk [m], where the subscript k denotes the grain size
fraction in increasing order (i.e., d1 < d2 < ... < dN ). Bed elevation change depends on the
divergence of the sediment transport rate (Exner , 1920):

∂η

∂t
+
∂qbx

∂x
+
∂qby

∂y
= 0 , (2.9)

where qbx =
∑N

k=1 qbxk [m2/s] and qby =
∑N

k=1 qbyk [m2/s] are the total specific (i.e., per
unit of differential length) sediment transport rates including pores in the x and y direction, re-
spectively. The variables qbxk [m2/s] and qbyk [m2/s] are the specific sediment transport rates
of size fraction k including pores. For simplicity we assume a constant porosity and density
of the bed sediment. The sediment transport rate is assumed to be locally at capacity, which
implies that we do not model the temporal and spatial adaptation of the sediment transport
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rate to capacity conditions (Bell and Sutherland , 1983; Phillips and Sutherland , 1989; Jain,
1992).

Changes in the bed surface grain size distribution are accounted for using the active layer
model (Hirano, 1971). Conservation of sediment mass of size fraction k in the active layer
reads:

∂Mak

∂t
+ f I

k

∂ (η − La)

∂t
+
∂qbxk

∂x
+
∂qbyk

∂y
= 0 k ∈ {1, N − 1} , (2.10)

and in the substrate (Chavarrías et al., 2018):

∂Msk

∂t
− f I

k

∂ (η − La)

∂t
= 0 k ∈ {1, N − 1} , (2.11)

where Mak = FakLa [m] and Msk =
∫ η0+η−La

η0
fsk(z)dz [m] are the volume of sediment

of size fraction k per unit of bed area in the active layer and the substrate, respectively.
Parameter η0 [m] is a datum for bed elevation. Parameters Fak ∈ [0, 1], fsk ∈ [0, 1],
and f I

k ∈ [0, 1] are the volume fraction content of sediment of size fraction k in the active
layer, substrate, and at the interface between the active layer and the substrate, respectively.
By definition, the sum of the volume fraction content over all size fractions equals 1:

N∑
k=1

Fak = 1 ,
N∑
k=1

fsk(z) = 1 ,
N∑
k=1

f I
k = 1 . (2.12)

The active layer thickness represents the part of the bed assumed to be instantaneously and
perfectly mixed. The active layer thickness has not vertical stratification. For this reason, the
active layer thickness depends on the time scale under consideration (Bennett and Nordin,
1977; Rahuel et al., 1989; Sieben, 1997; Wu, 2007). Under plain bed conditions, the active
layer thickness is usually related to the grain size distribution of the bed surface (Petts et al.,
1989; Rahuel et al., 1989). Under bedform dominated conditions, the part of the bed that
plays an active role in the sediment transport processes is usually related to a characteristic
bedform height (Deigaard and Fredsøe, 1978; Lee and Odgaard , 1986; Armanini and Di Sil-
vio, 1988). A more accurate representation of the mixing processes may be obtained if the
active layer thickness varies in space and time according to the local properties of the bed
and the flow. This approach implies that the active layer thickness is a dependent variable
of the system. Chavarrías et al. (2018) showed that when considering a variable active layer
thickness depending on the flow depth to account for the dependence on dune height, the
domain in which the active layer model is ill-posed increases slighlty. Yet, the main cause
of ill-posedness is independent of considering a variable active layer thickness (Chavarrías
et al., 2018). For this reason, here we assume a constant active layer thickness.

2.2 Closure Relations
The model introduced in Section 2.1 requires closure relations for the friction slope, the volume
fraction content of sediment at the interface between the active layer and the substrate, and
the sediment transport rate. In this section we describe the closure relations of the model.

We assume a Chézy-type friction such that:

Sfx =
CfqxQ

gh3
, Sfy =

CfqyQ

gh3
, (2.13)

where parameter Cf [−] is a nondimensional friction coefficient, which we assume to be
constant (Ikeda et al., 1981; Schielen et al., 1993). In general, the friction coefficient depends
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on the flow depth and grain size. The consequences of this decision are discussed in Section
9.

Under degradational conditions, the volume fraction content of size fraction k at the interface
between the active layer and the substrate is equal to that at the top part of the substrate
(f I
k = fsk(z = η − La) for ∂η/∂t < 0). This allows for modelling of arbitrarily abrupt

changes in grain size due to erosion of previous deposits. Under aggradational conditions
the sediment transferred to the substrate is a weighted mixture of the sediment in the active
layer and the bed load (Parker , 1991; Hoey and Ferguson, 1994; Toro-Escobar et al., 1996).
Here we simplify the analysis and we assume that the contribution of the bed load to the
depositional flux is negligible (i.e., f I

k = Fak for ∂η/∂t > 0) (Hirano, 1971).

The module of the specific sediment transport rate of size fraction k, qbk [m2/s], has a direction
given by the angle ϕsk [rad]:

(qbxk, qbyk) = qbk(cosϕsk, sinϕsk) . (2.14)

The magnitude of the sediment transport rate is equal to:

qbk = Fak

√
gRd3

k

(1− p)
q∗bk , (2.15)

where p is the porosity and q∗bk [−] is a nondimensional sediment transport rate (Einstein,
1950). The nondimensional sediment transport rate is computed using relations such as the
ones derived by Meyer-Peter and Müller (1948); Engelund and Hansen (1967); Ashida and
Michiue (1971), or Wilcock and Crowe (2003). These relations depend on the nondimensional
bed shear stress (or Shields (1936) stress):

θk =
Cf

(
Q
h

)2

gRdk
, (2.16)

where parameterR = ρs/ρw−1 [−] is the submerged sediment density, ρs = 2650 kg/m3

is the sediment density and ρw = 1000 kg/m3 is the water density. The relations for the
nondimensional sediment transport rate may depend on a hiding factor ξk [−], that accounts
for the fact that fine sediment in a mixture hides behind larger grains and a coarse sediment
in a mixture is more exposed than in unisize coarse sediment (Einstein, 1950). The hiding
factor depends on the mean grain size of the bed surface Dm [−]. In Appendix A we present
several closure relations for nondimensional sediment transport rate, hiding, and the mean
grain size.

The direction of the sediment transport (ϕsk [rad]) is affected by the secondary flow and the
bed slope (Van Bendegom, 1947):

tanϕsk =
sinϕτ − 1

gsk

∂η
∂y

cosϕτ − 1
gsk

∂η
∂x

k ∈ {1, N} , (2.17)

where gsk [−] is a function that accounts for the influence of the bed slope on the sediment
transport direction and ϕτ [rad] is the direction of the sediment transport accounting for the
secondary flow only:

tanϕτ =
qy − hαI

qx
Q
I

qx − hαI
qy
Q
I
. (2.18)
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Assuming a mild curvature, uniform flow conditions, and a logarithmic profile of the primary
flow, the constant αI [−] is (De Vriend , 1977):

αI =
2

κ2
(1− α) . (2.19)

The effect of the bed slope on the sediment transport direction depends on the grain size
(Parker and Andrews, 1985). We account for this effect setting:

gsk = Asθ
Bs
k k ∈ {1, N} , (2.20)

where As [−] and Bs [−] are nondimensional parameters. Different values of the coefficients
As and Bs have been proposed (for a recent review, see Baar et al. (2018)).
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3 Regularization Strategy

In this section we discuss two regularization strategies. In Section 3.1 we describe the exten-
sion to two-dimensional conditions of the regularization strategy devised by Chavarrías et al.
(2019b). In Section 3.1 we introduce a new regularization strategy.

3.1 Modification of the Time Scale of Mixing Processes
In this section we describe the possible regularization strategy based on a modification of the
time scale of the mixing processes. This strategy is a direct extension to two dimensions of the
strategy by Chavarrías et al. (2019b). The strategy modifies the active layer equation only and
is equivalent to using a preconditioning technique. One important limitation of this strategy is
that it can only be used when the active layer thickness is constant. The modification consist
of introducing a factor α [−] multiplying the rate of temporal change of the volume of sediment
in the active layer:

α
∂Mak

∂t
+ f I

k

∂ (η − La)

∂t
+
∂qbxk

∂x
+
∂qbyk

∂y
= 0 k ∈ {1, N − 1} . (3.1)

3.2 Addition of Diffusion to the Active Layer Equation
In this section we propose an alternative regularization strategy to the extension to two di-
mension of the strategy by Chavarrías et al. (2019b). The modification of the time scales that
successfully regularizes the one-dimensional model has the physical implication of filtering
the small time scale processes. We pursue a strategy that similarly implicitly accounts for the
small time scale processes.

We consider that the small time scale processes of sediment mixing in the active layer are
represented by an additional diffusive flux. This is similar to accounting for the small time scale
processes of water movement (i.e., turbulence), by means considering additional viscosity
(i.e., eddy viscosity). The proposed modified active layer equation is:

∂Mak

∂t
+f I

k

∂ (η − La)

∂t
+
∂qbxk

∂x
+
∂qbyk

∂y
−κHx

∂2Mak

∂x2
−κHy

∂2Mak

∂y2
= 0 k ∈ {1, N−1} ,

(3.2)

where κHx > 0 [m2/s] and κHy > 0 [m2/s] are diffusion coefficients in the x and y direction,
respectively.

While we compare the additional diffusive flux with turbulent diffusion, we are not explicitly de-
riving the flux from filtering small scale perturbations, as one can do for deriving the turbulent
diffusive flux. This exercise would strengthen the theoretical basis of the proposed equation.

We see no reason to limit the active layer thickness to be constant with time. This is because
mass is conserved regardless of the time variation of the active layer thickness.
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4 Linearization of the System of Equations

In assessing the well-posedness of the system of equations, we will consider growth of per-
turbations in the linear model. In this section we present the linearized system of equations.
We subsequently summarize the model equations.

The system models the evolution ofN+3 variables: h, qx, qy, η, and ,Mak ∀k ∈ {1, N−1}.
The model equations are:

∂h

∂t
+
∂qx

∂x
+
∂qy

∂y
= 0 , (4.1)

∂qx

∂t
+
∂(q2

x/h+ gh2/2)

∂x
+
∂
( qxqy

h

)
∂y

+ gh
∂η

∂x
− Fsx = −ghSfx , (4.2)

∂qy

∂t
+
∂(q2

y/h+ gh2/2)

∂y
+
∂
( qxqy

h

)
∂x

+ gh
∂η

∂y
− Fsy = −ghSfy , (4.3)

∂η

∂t
+
∂qbx

∂x
+
∂qby

∂y
= 0 , (4.4)

For the case of the first regularization strategy, the active layer equation is:

α
∂Mak

∂t
− f I

k

∂qbx

∂x
− f I

k

∂qby

∂y
+
∂qbxk

∂x
+
∂qbyk

∂y
= 0 k ∈ {1, N − 1} . (4.5)

For the case of the second regularization strategy, the active layer equation is:

∂Mak

∂t
−f I

k

∂qbx

∂x
−f I

k

∂qby

∂y
+
∂qbxk

∂x
+
∂qbyk

∂y
−κHx

∂2Mak

∂x2
−κHy

∂2Mak

∂y2
= 0 k ∈ {1, N−1} .

(4.6)

We consider a reference state that is a solution to the system of equations. The reference
state is a steady uniform straight flow in the x direction over an inclined plane bed composed
of an arbitrary number of size fractions. Mathematically: h0 = ct., qx0 = ct., qy0 = 0,
∂η
∂x

= ct. =
−Cfq

2
x0

gh30
, ∂η
∂y

= 0, Mak0 = ct. ∀k ∈ {1, N − 1}, where ct. denotes a constant

different from 0 and subscript 0 indicates the reference solution. A small perturbation h′, q′x,
q′y, η′, M ′

ak ∀k ∈ {1, N − 1} is added to the reference solution.

The linearization of Equations (4.1)-(4.6) is conducted in Sections 4.1-4.5.

4.1 Water Mass Conservation
The non-linear equation is:

∂h

∂t
+
∂qx

∂x
+
∂qy

∂y
= 0 (4.7)

Linearizing and substituting the reference solution we obtain:

∂h′

∂t
+
∂q′x
∂x

+
∂q′y
∂y

= 0 (4.8)
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4.2 Water Momentum Conservation in x Direction
The non-linear equation is:

∂qx

∂t
+
∂(q2

x/h+ gh2/2)

∂x
+ gh

∂η

∂x
− Fsx

+
∂
( qxqy

h

)
∂y

+ghSfx = 0 .

(4.9)

Expanding the terms we obtain:

∂qx

∂t
+

(
gh−

(qx

h

)2
)
∂h

∂x
+

(
2
qx

h
− ∂Txx

∂qx

)
∂qx

∂x
− ∂Txx

∂qy

∂qy

∂x
+ gh

∂η

∂x

−qxqy

h2

∂h

∂y
+

(
qy

h
− ∂Txy

∂qx

)
∂qx

∂y
+

(
qx

h
− ∂Txy

∂qy

)
∂qy

∂y

+
CfqxQ

h2
= 0 .

(4.10)

Linearizing and substituting the reference solution we obtain:

∂q′x
∂t

+

(
gh0 −

(
qx0

h0

)2
)
∂h′

∂x
+ 2

qx0

h0

∂q′x
∂x

+ gh0
∂η′

∂x
+ gh′

∂η0

∂x

+
qx0

h0

∂q′y
∂y

−2Cfq
2
x0

h3
0

h′ +
2Cfqx0

h2
0

q′x = 0 .

(4.11)

Reorganizing the terms we obtain:

∂q′x
∂t

+

(
gh0 −

(
qx0

h0

)2
)
∂h′

∂x
+ 2

qx0

h0

∂q′x
∂x

+ gh0
∂η′

∂x

+
qx0

h0

∂q′y
∂y

+

(
g
∂η0

∂x
− 2q2

x0

h3
0

)
h′ +

2qx0

h2
0

q′x = 0 .

(4.12)

In all the terms multiplying a derivative with reference solution equal to zero, only the zero
order part is not negligible. For instance, expanding in Taylor series until the first order, the
first term of the momentum equation in the x direction is:

gh−
(qx

h

)2

= gh0 −
(
qx0

h0

)2

+

(
g +

2q2
x0

h3
0

)
h′ − 2qx0

h0

q′x . (4.13)

Multiplying by the derivative we obtain:(
gh0 −

(
qx0

h0

)2

+

(
g +

2q2
x0

h3
0

)
h′ − 2qx0

h0

q′x

)
∂h′

∂x
=

(
gh0 −

(
qx0

h0

)2
)
∂h′

∂x
, (4.14)
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where we have neglected second order terms. The terms multiplying the bed slope (the
derivative of the reference solution is not equal to zero) are:

gh
∂η

∂x
= g (h0 + h′)

∂ (η0 + η′)

∂x
= gh0

∂η0

∂x
+ gh0

∂η′

∂x
+ gh′

∂η0

∂x
, (4.15)

where we have neglected secondary terms. The linearization of the friction term is:

CfqxQ

h2
=
Cfq

2
x0

h2
0

− 2Cfq
2
x0

h3
0

h′ +
2Cfqx0

h2
0

q′x . (4.16)

We have used that:

∂Txx

∂qx

∣∣∣∣
0

= 0 (4.17)

∂Txx

∂qy

∣∣∣∣
0

= 0 (4.18)

∂Txy

∂qx

∣∣∣∣
0

= 0 (4.19)

∂Txy

∂qy

∣∣∣∣
0

= 0 (4.20)

4.3 Water Momentum Conservation in y Direction
The non-linear equation is:

∂qy

∂t
+
∂
( qxqy

h

)
∂x

+
∂(q2

y/h+ gh2/2)

∂y
+ gh

∂η

∂y
− Fsy

+ghSfy = 0 .

(4.21)

Expanding the terms we obtain:

∂qy

∂t
− qxqy

h2

∂h

∂x
+

(
qy

h
− ∂Tyx

∂qx

)
∂qx

∂x
+

(
qx

h
− ∂Tyx

∂qy

)
∂qy

∂x

+

(
gh−

(qy

h

)2
)
∂h

∂y
− ∂Tyy

∂qx

∂qx

∂y
+

(
2
qy

h
− ∂Tyy

∂qy

)
∂qy

∂y
+ gh

∂η

∂y

+
CfqyQ

h2
= 0

(4.22)

Linearizing ans substituting the reference solution we obtain:

∂q′y
∂t

+
qx0

h0

∂q′y
∂x

+gh0
∂h′

∂y
+ gh0

∂η′

∂y
Cfqx0

h2
0

q′y = 0 .

(4.23)
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4.4 Sediment Mass Conservation for the Entire Mixture
The non-linear equation is:

∂η

∂t
+
∂qbx

∂x
+
∂qby

∂y
= 0 (4.24)

Expanding the terms we obtain:

∂η

∂t
+
∂qbx

∂h

∂h

∂x
+
∂qbx

∂qx

∂qx

∂x
+
∂qbx

∂qy

∂qy

∂x
+

N−1∑
l=1

∂qbx

∂Mal

∂Mal

∂x

+
∂qby

∂h

∂h

∂y
+
∂qby

∂qx

∂qx

∂y
+
∂qby

∂qy

∂qy

∂y
+

N−1∑
l=1

∂qby

∂Mal

∂Mal

∂y

+
∂qbx

∂ ∂η
∂x

∂2η

∂x2
+
∂qbx

∂ ∂η
∂y

∂2η

∂x∂y
+
∂qby

∂ ∂η
∂x

∂2η

∂x∂y
+
∂qby

∂ ∂η
∂y

∂2η

∂y2
,

(4.25)

where we have used that:

qbxk = f

(
h, qx, qy,Mak,

∂η

∂x
,
∂η

∂y

)
. (4.26)

Note that qbxk is not a function of the bed elevation η, but it is a function of the derivatives of
η. For a function f

(
η, ∂η

∂x

)
we write:

∂f

∂x
=
∂f

∂η

∂η

∂x
+

∂f

∂ ∂η
∂x

∂2η

∂x2
. (4.27)

In the linearization, all the derivatives are evaluated at the reference state only and no other
terms appear. This is because the only variable whose derivative is not equal to 0 in the
reference state is η, but the sediment transport rate does not depend on η. For instance:

∂qbxk

∂h

∂h

∂x
=
∂qbxk

∂h

∣∣∣∣
Q0+Q′

∂ (h0 + h′)

∂x
=[

∂qbxk

∂h

∣∣∣∣
Q0

+ h′
∂2qbxk

∂h2

∣∣∣∣
Q0

+ q′x
∂2qbxk

∂h∂qx

∣∣∣∣
Q0

+ · · ·

](
∂h0

∂x
+
∂h′

∂x

)
=

∂qbxk

∂h

∣∣∣∣
Q0

∂h′

∂x

(4.28)

We will denote |Q0 = |0. Therefore, the linearized equation is:

∂η′

∂t
+
∂qbx

∂h

∣∣∣∣
0

∂h

∂x
+
∂qbx

∂qx

∣∣∣∣
0

∂qx

∂x
+
∂qbx

∂qy

∣∣∣∣
0

∂qy

∂x
+

N−1∑
l=1

∂qbx

∂Mal

∣∣∣∣
0

∂Mal

∂x

+
∂qby

∂h

∣∣∣∣
0

∂h

∂y
+
∂qby

∂qx

∣∣∣∣
0

∂qx

∂y
+
∂qby

∂qy

∣∣∣∣
0

∂qy

∂y
+

N−1∑
l=1

∂qby

∂Mal

∣∣∣∣
0

∂Mal

∂y

+
∂qbx

∂ ∂η
∂x

∣∣∣∣∣
0

∂2η

∂x2
+
∂qbx

∂ ∂η
∂y

∣∣∣∣∣
0

∂2η

∂x∂y
+
∂qby

∂ ∂η
∂x

∣∣∣∣∣
0

∂2η

∂x∂y
+
∂qby

∂ ∂η
∂y

∣∣∣∣∣
0

∂2η

∂y2
,

(4.29)
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The derivatives of the sediment transport rate in the x direction are:

∂qbxk

∂h

∣∣∣∣
0

=
∂qbk cos (ϕsk)

∂h

∣∣∣∣
0

= cos (ϕsk0)
∂qbk

∂h

∣∣∣∣
0

− qbk0 sin (ϕsk0)
∂ϕsk

∂h

∣∣∣∣
0

=

=
∂qbk

∂h

∣∣∣∣
0

=
∂qbk

∂θk

∣∣∣∣
0

∂θk
∂h

∣∣∣∣
0

=
−qx0

h0

∂qbk

∂qx

∣∣∣∣
0

,

(4.30)

∂qbxk

∂qx

∣∣∣∣
0

=
∂qbk cos (ϕsk)

∂qx

∣∣∣∣
0

= cos (ϕsk0)
∂qbk

∂qx

∣∣∣∣
0

− qbk0 sin (ϕsk0)
∂ϕsk

∂qx

∣∣∣∣
0

=

=
∂qbk

∂qx

∣∣∣∣
0

,

(4.31)

∂qbxk

∂qy

∣∣∣∣
0

=
∂qbk cos (ϕsk)

∂qy

∣∣∣∣
0

= cos (ϕsk0)
∂qbk

∂qy

∣∣∣∣
0

− qbk0 sin (ϕsk0)
∂ϕsk

∂qy

∣∣∣∣
0

=

= 0 ,

(4.32)

∂qbxk

∂Mak

∣∣∣∣
0

=
∂qbk cos (ϕsk)

∂Mak

∣∣∣∣
0

= cos (ϕsk0)
∂qbk

∂Mak

∣∣∣∣
0

− qbk0 sin (ϕsk0)
∂ϕsk

∂Mak

∣∣∣∣
0

=

=
∂qbk

∂Mak

∣∣∣∣
0

,

(4.33)

∂qbxk

∂ ∂η
∂x

∣∣∣∣∣
0

=
∂qbk cos (ϕsk)

∂ ∂η
∂x

∣∣∣∣∣
0

= cos (ϕsk0)
∂qbk

∂ ∂η
∂x

∣∣∣∣∣
0

− qbk0 sin (ϕsk0)
∂ϕsk

∂ ∂η
∂x

∣∣∣∣∣
0

=

= 0 ,

(4.34)

∂qbxk

∂ ∂η
∂y

∣∣∣∣∣
0

=
∂qbk cos (ϕsk)

∂ ∂η
∂y

∣∣∣∣∣
0

= cos (ϕsk0)
∂qbk

∂ ∂η
∂y

∣∣∣∣∣
0

− qbk0 sin (ϕsk0)
∂ϕsk

∂ ∂η
∂y

∣∣∣∣∣
0

=

= 0 ,

(4.35)

where we have used that:

cos (ϕsk0) = 1 , (4.36)

sin (ϕsk0) = 0 . (4.37)

Note that:

∂qbk

∂qy

∣∣∣∣
0

=
∂qbk

∂θk

∣∣∣∣
0

∂θk
∂qy

∣∣∣∣
0

= 0 , (4.38)

and that the module of the sediment transport rate does not depend on the bed slope such
that:

∂qbk

∂ ∂η
∂x

∣∣∣∣∣
0

= 0 . (4.39)
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∂qbk

∂ ∂η
∂y

∣∣∣∣∣
0

= 0 . (4.40)

We have related the derivative respect to the water depth to the derivative respect to the water
discharge per unit width in the x direction:

∂θk
∂h

=
−2Cf

(
q2

x + q2
y

)
gRdkh3

, (4.41)

∂θk
∂qx

=
2Cfqx

gRdkh2
, (4.42)

∂θk
∂qy

=
2Cfqy

gRdkh2
, (4.43)

which implies that:

∂θk
∂h

∣∣∣∣
0

=
−qx0

h0

∂θk
∂qx

∣∣∣∣
0

, (4.44)

∂θk
∂qy

∣∣∣∣
0

= 0 . (4.45)

The derivatives of the sediment transport rate in the y direction are:

∂qbyk

∂h

∣∣∣∣
0

=
∂qbk sin (ϕsk)

∂h

∣∣∣∣
0

= sin (ϕsk0)
∂qbk

∂h

∣∣∣∣
0

+ qbk0 cos (ϕsk0)
∂ϕsk

∂h

∣∣∣∣
0

= 0 (4.46)

∂qbyk

∂qx

∣∣∣∣
0

=
∂qbk sin (ϕsk)

∂qx

∣∣∣∣
0

= sin (ϕsk0)
∂qbk

∂qx

∣∣∣∣
0

+ qbk0 cos (ϕsk0)
∂ϕsk

∂qx

∣∣∣∣
0

= 0 (4.47)

∂qbyk

∂qy

∣∣∣∣
0

=
∂qbk sin (ϕsk)

∂qy

∣∣∣∣
0

= sin (ϕsk0)
∂qbk

∂qy

∣∣∣∣
0

+ qbk0 cos (ϕsk0)
∂ϕsk

∂qy

∣∣∣∣
0

=

qbk0
∂ϕsk

∂qy

∣∣∣∣
0

=
qbk0

qx0

∂ϕsk

∂ϕτ

∣∣∣∣
0

(4.48)

∂qbyk

∂Mak

∣∣∣∣
0

=
∂qbk sin (ϕsk)

∂Mak

∣∣∣∣
0

= sin (ϕsk0)
∂qbk

∂Mak

∣∣∣∣
0

+ qbk0 cos (ϕsk0)
∂ϕsk

∂Mak

∣∣∣∣
0

=

= qbk0
∂ϕsk

∂Mak

∣∣∣∣
0

= 0

(4.49)
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∂qbyk

∂ ∂η
∂x

∣∣∣∣∣
0

=
∂qbk sin (ϕsk)

∂ ∂η
∂x

∣∣∣∣∣
0

= sin (ϕsk0)
∂qbk

∂ ∂η
∂x

∣∣∣∣∣
0

+ qbk0 cos (ϕsk0)
∂ϕsk

∂ ∂η
∂x

∣∣∣∣∣
0

= 0 (4.50)

∂qbyk

∂ ∂η
∂y

∣∣∣∣∣
0

=
∂qbk sin (ϕsk)

∂ ∂η
∂y

∣∣∣∣∣
0

= sin (ϕsk0)
∂qbk

∂ ∂η
∂y

∣∣∣∣∣
0

+ qbk0 cos (ϕsk0)
∂ϕsk

∂ ∂η
∂y

∣∣∣∣∣
0

=

= −qbk0

gsk0

∂ϕsk

∂ϕτ

∣∣∣∣
0

.

(4.51)

Given that the angle of the sediment transport rate direction is small we write:

ϕsk ≈ tan (ϕsk) =
sinϕτ − 1

gsk

∂η
∂y

cosϕτ − 1
gsk

∂η
∂x

≈
ϕτ − 1

gsk

∂η
∂y

1− 1
gsk

∂η
∂x

, (4.52)

and:

ϕτ ≈ tan (ϕτ ) =
qy − hαI qxQ I
qx − hαI qyQ I

. (4.53)

We write:

∂ϕsk

∂h

∣∣∣∣
0

=
∂ϕsk

∂ϕτ

∣∣∣∣
0

∂ϕτ
∂h

∣∣∣∣
0

, (4.54)

∂ϕsk

∂qx

∣∣∣∣
0

=
∂ϕsk

∂ϕτ

∣∣∣∣
0

∂ϕτ
∂qx

∣∣∣∣
0

, (4.55)

∂ϕsk

∂qy

∣∣∣∣
0

=
∂ϕsk

∂ϕτ

∣∣∣∣
0

∂ϕτ
∂qy

∣∣∣∣
0

. (4.56)

∂ϕsk

∂ ∂η
∂x

∣∣∣∣∣
0

=
∂ϕsk

∂ϕτ

∣∣∣∣
0

∂ϕτ

∂ ∂η
∂x

∣∣∣∣∣
0

. (4.57)

∂ϕsk

∂ ∂η
∂y

∣∣∣∣∣
0

=
∂ϕsk

∂ϕτ

∣∣∣∣
0

∂ϕτ

∂ ∂η
∂y

∣∣∣∣∣
0

. (4.58)

where:

∂ϕsk

∂ϕτ

∣∣∣∣
0

=
1

1− 1
gsk0

∂η
∂x

≈ 1 , (4.59)
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under the assumption that ∂η
∂x
� 1 and:

∂ϕτ
∂h

∣∣∣∣
0

= 0 (4.60)

∂ϕτ
∂qx

∣∣∣∣
0

= 0 (4.61)

∂ϕτ
∂qy

∣∣∣∣
0

=
1

qx0

(4.62)

∂ϕsk

∂ ∂η
∂x

∣∣∣∣∣
0

= 0 . (4.63)

∂ϕsk

∂ ∂η
∂y

∣∣∣∣∣
0

=
−1

gsk

. (4.64)

The total derivative is:

∂qbx

∂Mak

∣∣∣∣
0

=
N∑
k=1

∂qbxk

∂Mak

∣∣∣∣
0

. (4.65)

∂qby

∂ ∂η
∂y

∣∣∣∣∣
0

=
N∑
k=1

∂qbyk

∂ ∂η
∂y

∣∣∣∣∣
0

. (4.66)

4.5 Sediment Mass Conservation for each Grain Size in the Active Layer
The non-linear equation is:

∂Mak

∂t
− f I

k

∂qbx

∂x
− f I

k

∂qby

∂y
+
∂qbxk

∂x
+
∂qbyk

∂y
= 0 k ∈ {1, N − 1} (4.67)

Expanding the terms we obtain:

∂Mak

∂t
+

[
∂qbxk

∂h
− f I

k

∂qbx

∂h

]
∂h

∂x
+

[
∂qbxk

∂qx

− f I
k

∂qbx

∂qx

]
∂qx

∂x
+[

∂qbxk

∂qy

− f I
k

∂qbx

∂qy

]
∂qy

∂x
+

N−1∑
l=1

[
∂qbxk

∂Mal

− f I
k

∂qbx

∂Mal

]
∂Mal

∂x[
∂qbxk

∂h
− f I

k

∂qbx

∂h

]
∂h

∂y
+

[
∂qbxk

∂qx

− f I
k

∂qbx

∂qx

]
∂qx

∂y
+[

∂qbxk

∂qy

− f I
k

∂qbx

∂qy

]
∂qy

∂y
+

N−1∑
l=1

[
∂qbxk

∂Mal

− f I
k

∂qbx

∂Mal

]
∂Mal

∂y

+

[
∂qbxk

∂ ∂η
∂x

− f I
k

∂qbx

∂ ∂η
∂x

]
∂2η

∂x2
+

[
∂qbxk

∂ ∂η
∂y

− f I
k

∂qbx

∂ ∂η
∂y

]
∂2η

∂x∂y

+

[
∂qbyk

∂ ∂η
∂x

− f I
k

∂qby

∂ ∂η
∂x

]
∂2η

∂x∂y
+

[
∂qbyk

∂ ∂η
∂y

− f I
k

∂qby

∂ ∂η
∂y

]
∂2η

∂y2

(4.68)
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The linearized equation is:

∂M ′
ak

∂t
+

[
∂qbxk

∂h

∣∣∣∣
0

− f I
k0

∂qbx

∂h

∣∣∣∣
0

]
∂h′

∂x
+

[
∂qbxk

∂qx

∣∣∣∣
0

− f I
k0

∂qbx

∂qx

∣∣∣∣
0

]
∂q′x
∂x

+[
∂qbxk

∂qy

∣∣∣∣
0

− f I
k0

∂qbx

∂qy

∣∣∣∣
0

]
∂q′y
∂x

+
N−1∑
l=1

[
∂qbxk

∂Mal

∣∣∣∣
0

− f I
k0

∂qbx

∂Mal

∣∣∣∣
0

]
∂M ′

al

∂x[
∂qbxk

∂h

∣∣∣∣
0

− f I
k0

∂qbx

∂h

∣∣∣∣
0

]
∂h′

∂y
+

[
∂qbxk

∂qx

∣∣∣∣
0

− f I
k0

∂qbx

∂qx

∣∣∣∣
0

]
∂q′x
∂y

+[
∂qbxk

∂qy

∣∣∣∣
0

− f I
k0

∂qbx

∂qy

∣∣∣∣
0

]
∂q′y
∂y

+
N−1∑
l=1

[
∂qbxk

∂Mal

∣∣∣∣
0

− f I
k0

∂qbx

∂Mal

∣∣∣∣
0

]
∂M ′

al

∂y

+

[
∂qbxk

∂ ∂η
∂x

∣∣∣∣∣
0

− f I
k0

∂qbx

∂ ∂η
∂x

∣∣∣∣∣
0

]
∂2η′

∂x2
+

[
∂qbxk

∂ ∂η
∂y

∣∣∣∣∣
0

− f I
k0

∂qbx

∂ ∂η
∂y

∣∣∣∣∣
0

]
∂2η′

∂x∂y

+

[
∂qbyk

∂ ∂η
∂x

∣∣∣∣∣
0

− f I
k0

∂qby

∂ ∂η
∂x

∣∣∣∣∣
0

]
∂2η′

∂x∂y
+

[
∂qbyk

∂ ∂η
∂y

∣∣∣∣∣
0

− f I
k0

∂qby

∂ ∂η
∂y

∣∣∣∣∣
0

]
∂2η′

∂y2

(4.69)

We have neglected the contribution of a perturbation to Mak in f I
k that would exist under

aggradational conditions to avoid cases.

When considering the first regularization strategy based on a modification of the time scale of
the mixing processes (Section 3.1), the only modification is that all terms in Equation ((4.68))
but the time derivative term are divided by α. When considering the second regularization
strategy based on adding diffusion to the active layer equation (Section 3.2) two new terms
are added to the left hand side of Equation ((4.68)):

−κHx
∂2M ′

ak

∂x2
− κHy

∂2M ′
ak

∂y2
. (4.70)
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5 Perturbation Analysis

In this section we conduct a perturbation analysis to study well-posedness of the system
of equations. In Section 5.1 we write the linear model in matrix-vector formulation, as it is
convenient to analyze the system of equations. In Section 5.2 we obtain the eigenvalue
problem of the linear model. In Section 5.3 we define the concept of ill-posedness based
on the eigenvalue problem of the linear model.

5.1 Matrix Formulation
In this section we write the system of equations in matrix formulation. The equation for the
mass conservation of sediment in the substrate (Equation ((2.11))) is a linear combination
of the active layer equation (Eq. (2.10)) and the Exner equation (Eq. (2.9)). The rest of the
equations do not depend on Msk. Thus, the substrate equations provide a zero eigenvalue
with multiplicity N − 1. To simplify the writing we omit the substrate equations.

We recast the system of perturbed equations, ((4.8)), ((4.12)), ((4.23)), ((4.29)), and ((4.69))
in matrix form:

∂Q′

∂t
+Dx0

∂2Q′

∂x2
+Dy

∂2Q′

∂y2
+C0

∂2Q′

∂x∂y
+Ax0

∂Q′

∂x
+Ay0

∂Q′

∂y
+B0Q

′ = 0 (5.1)

The vector of dependent variables is:

Q′ =


h′

q′x
q′y
η′

[M ′
ak]

 (5.2)

The diffusive matrix in x direction is:

Dx0 = 0 (5.3)

The diffusive matrix in y direction is:

Dy0 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0
∂qby

∂ ∂η
∂y

∣∣∣∣
0

0

0 0 0

[
∂qbyk

∂ ∂η
∂y

∣∣∣∣
0

− f I
k0

∂qby

∂ ∂η
∂y

∣∣∣∣
0

]
0


(5.4)

The matrix of cross derivatives is:

C0 = 0 (5.5)
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The system matrix in x direction is:

Ax0 =



0 1 0 0 0

gh0 −
(
qx0
h0

)2

2 qx0
h0

0 gh0 0

0 0 qx0
h0

0 0

∂qbx
∂h

∣∣
0

∂qbx
∂qx

∣∣∣
0

0 0
[
∂qbx
∂Mal

∣∣∣
0

]
[
∂qbxk
∂h

∣∣
0
− f I

k0
∂qbx
∂h

∣∣
0

] [
∂qbxk
∂qx

∣∣∣
0
− f I

k0
∂qbx
∂qx

∣∣∣
0

]
0 0

[
∂qbxk
∂Mal

∣∣∣
0
− f I

k0
∂qbx
∂Mal

∣∣∣
0

]


(5.6)

The system matrix in y direction is:

Ay0 =


0 0 1 0 0

0 0 qx0
h0

0 0

gh0 0 0 gh0 0

0 0
∂qby
∂qy

∣∣∣
0

0 0

0 0

[
∂qbyk
∂qy

∣∣∣
0
− f I

k0
∂qby
∂qy

∣∣∣
0

]
0 0


(5.7)

The matrix of linear terms is:

B0 =


0 0 0 0 0

−3Cfq
2
x0

h30

2Cfqx0
h20

0 0 0

0 0 Cfqx0
h20

0 0

0 0 0 0 0

0 0 0 0 0


(5.8)

Note that the only derivatives that need to be computed are (see Section 4.4):

∂qbk

∂qx

∀k and
∂qbk

∂Mal

∀k, l ∈ [1, N − 1] . (5.9)

Considering that hiding is not a function of the flow discharge, we write:

∂qbk

∂qx

=
∂qbk

∂θk

∂θk
∂qx

= Fak

√
gRd3

k

(1− p)
2Cfqx

gRdkh2

∂q∗bk
∂θk

(5.10)

Furthermore we expand the second derivative of Equation ((5.9)) as:

∂qbk

∂Mal

=

√
gRd3

k

(1− p)La

(
q∗bk

∂Fak

∂Fal

+ Fak
∂q∗bk
∂Fal

)
(5.11)

The first term of the right hand side in equation (5.11) is:

∂Fak

∂Fal

=

{
1 for k = l , 1 ≤ (k, l) < N − 1 ,
0 for k 6= l , 1 ≤ (k, l) < N − 1 ,
−1 for k = N , ∀l

. (5.12)
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Note that we account for the constrain in Equation ((2.12)). The second term of the right hand
side in Equation ((5.11)) is related to hiding and is expanded as:

∂q∗bk
∂Fal

=
∂q∗bk
∂ξk

∂ξk
∂Fal

=
∂q∗bk
∂ξk

∂ξk
∂Dm

∂Dm

∂Fal

, (5.13)

where we assume that the hiding function depends on the volume fraction content of sediment
in the active layer through the mean grain size. Thus, all terms in the matrices depend on the
following derivatives only:

∂q∗bk
∂θk

∀k , ∂q
∗
bk

∂ξk
∀k , ∂ξk

∂Dm

∀k , and
∂Dm

∂Fal

l ∈ [1, N − 1] . (5.14)

In this manner, given independent closure relations for the nondiemnsional sediment transport
rate, hiding, and mean grain size, one obtains all the derivatives to build the matrices. In
Appendix A we compute the derivatives for some closure relations.

When applying the first regularization strategy (Section 3.1), the terms from the 5th row until
the end and in all columns are divided by α. When applying the second regularization strategy
(Section 3.2), the lower right submatrix of matrices Dx and Dy have an additional term in the
main diagonal equal to−κHx and−κHy, respectively.

5.2 Eigenvalue Problem
We assume that the perturbations can be represented as a Fourier series, which implies that
they are piecewise smooth and bounded for x = ±∞. Using this assumption the solution of
the perturbed system is expressed in the form of normal modes:

Q′ = Re
(
Vei(kwx+kwy−ωt)

)
, (5.15)

where i is the imaginary unit, kwx [rad/m] and kwy [rad/m] are the real wave numbers in x
and y direction, respectively, ω = ωr + iωi [rad/s] is the complex angular frequency, V is
the complex amplitude vector, and Re denotes the real part of the solution (which we will omit
in the subsequent steps). The variable ωr is the angular frequency and ωi the attenuation
coefficient. A value of ωi > 0 implies growth of perturbations and ωi < 0 decay. Substitution
of equation ((5.15)) in equation ((5.1)) yields:

[M0 − ω1]V = 0 , (5.16)

where:

M0 = Dx0k
2
wxi + Dy0k

2
wyi + Ax0kwx + Ay0kwy −B0i , (5.17)

and 1 denotes the unit matrix. Equation ((5.16)) is an eigenvalue problem in which the eigen-
values of M0 (as a function of the wave number) are the values of ω satisfying equation
((5.16)).

The solution of the linear model provides information regarding the development of small am-
plitude oscillations only, but for an arbitrary wave number. For this reason the linear model is
convenient for studying the well-posedness of the model, which we will assess subsequently.
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5.3 Instability, Hyperbolicity, and Ill-Posedness
Ill-posedness has been related to the system of governing equations losing its hyperbolic
character. Stability analysis investigates growth and decay of perturbations of a base state.
The two mathematical problems may seem unrelated but in fact they are strongly linked. In this
section we clarify the terms unstable, hyperbolic, and ill-posed, and present the mathematical
framework that we use to study the well-posedness of the system of equations.

A system is stable if perturbations to an equilibrium state decay and the solution returns to
its original state. This is equivalent to saying that all possible combinations of wave numbers
in the x and y directions yield a negative growth rate (ωi, equation ((5.15))). An example
of a stable system in hydrodynamics is the inviscid Shallow Water Equations (iSWE) for a
Froude number smaller than 2 (Jeffreys, 1925; Balmforth and Mandre, 2004; Colombini and
Stocchino, 2005). In figure 5.1a we show the maximum growth rate of perturbations to a ref-
erence solution (Case I1, tables 5.1 and 5.2) of the iSWE on an inclined plane (i.e., the first 3
equations of the complete system, equation ((5.1)), with neither secondary flow nor diffusion).
The growth rate is obtained numerically by computing the eigenvalues of the reduced ma-
trix M0 (the first 3 rows and columns in equation ((5.17))) for wave numbers between 0 and
250 rad/m, which is equivalent to wavelengths (lwx = 2π/kwx and equivalently for y) down to
1 cm. Figure 5.1b presents the same information as figure 5.1a in terms of wavelength rather
than wave number to better illustrate the behaviour for large wavelengths. The growth rate is
negative for all wave numbers, which confirms that the iSWE for Fr < 2 yield a stable solution.

u [m/s] v [m/s] h [m] Cf [−]

1 0 1 0.007

Table 5.1: Reference state.

Case model Fr stability mathematical character

I1 iSWE 0.32 stable well-posed
B1 iSWE+Exner 0.32 unstable well-posed
I2 iSWE 2.01 unstable ill-posed

Table 5.2: Cases of a stable well-posed model (I1), an unstable well-posed model (B1),
and an ill-posed model (I2). Case I2 has the same parameter values as Case
I1 but for the mean flow velocity which is equal to 6.30 m/s.

A system is unstable when perturbations to an equilibrium state grow and the solution diverges
from the initial equilibrium state. The growth of river bars is an example of an unstable system
in river morphodynamics. A straight alluvial channel is stable if the width-to-depth ratio is
sufficiently small and, above a certain threshold value, the channel becomes unstable and free
alternate bars grow (Engelund and Skovgaard , 1973; Fredsøe, 1978; Colombini et al., 1987;
Schielen et al., 1993). Mathematically, an unstable system has a region, a domain in the wave
number space, in which the growth rate of perturbations is positive. In figure 5.1c-d we present
the growth rate of perturbations to a reference solution consisting of uniform flow (table 5.1)
on an alluvial bed composed of unisize sediment with a characteristic grain size equal to
0.001 m (Case B1, table 5.2). The sediment transport rate is computed using the relation
by Engelund and Hansen (1967) and the effect of the bed slope on the sediment transport
direction is accounted for using the simplest formulation, gs = 1. Figure 5.1d confirms the
classical result of linear bar theory: there exists a critical transverse wavelength (lwyc) below
which all perturbations decay. In our particular case lwyc = 40.2m. Impermeable boundary
conditions at the river banks limit the possible wavelengths to fractions of the channel widthB
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Figure 5.1: Growth rate of perturbations added to the reference case (tables 5.1 and 5.2)
as a function of the wave number and the wavelength: (a)-(b) iSWE, Fr < 2
(Case I1, well-posed), (c)-(d) iSHE+Exner (Case B1, well-posed), and (e)-(f)
iSWE, Fr > 2 (Case I2, ill-posed). The subplots in the two columns show
the same information but highlight the behaviour for large wave numbers (left
column) and for large wavelengths (right column). Red and green indicates
growth and decay of perturbations, respectively.

[m] such that lwy = 2B/m for m = 1, 2, ... (Callander , 1969). As the most unstable mode
is the first one (i.e., m = 1, alternate bars) (Colombini et al., 1987; Schielen et al., 1993), the
minimum channel width above which perturbations grow is Bc = lwyc/2 = 20.1m, which
confirms the results of Schielen et al. (1993). Figure 5.1c highlights, as for case I1, the decay
of short waves.

A particular case of instability is that in which the domain of positive growth rate extends to
infinitely large wave numbers (i.e., short waves). Under this condition there is no cutoff wave
number above which we can neglect the contribution of ever shorter waves with non-zero
growth rates. For any unstable perturbation a shorter one can be found which is even more
unstable. This implies that the growth rate of an infinitesimal perturbation (i.e., noise) tends
to infinity. Such a system cannot represent a physical phenomenon, as the growth rate of
any physical process in nature is bounded. A system in which the growth rate of infinitesimal
perturbations tends to infinity does not have a unique solution depending continuously on
the initial and boundary conditions, which implies that the system is ill-posed (Hadamard ,
1923; Joseph and Saut , 1990). An example of an ill-posed hydrodynamic model is the iSWE
for flow with a Froude number larger than 2. In figure 5.1e-f we show the growth rate of
perturbations to the reference solution of a case in which the Froude number is slightly larger
than 2 (Case I2, table 5.2). The growth rate extends to infinitely large wave numbers, which
confirms that this case is ill-posed. A model being ill-posed is an indication that there is a
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relevant physical mechanism that has been neglected in the model derivation (Fowler , 1997).
Viscous forces regularise the iSWE (i.e., make the model well-posed) and rather than ill-
posed, the viscous Shallow Water Equations become simply unstable for a Froude number
larger than 2, predicting the formation of roll-waves (Balmforth and Mandre, 2004; Balmforth
and Vakil , 2012; Rodrigues and Zumbrun, 2016; Barker et al., 2017a,b).

Chaotic models, just as ill-posed models, are sensitive to the initial and boundary conditions
and lose their predictive capabilities in a deterministic sense (Lorenz, 1963). Yet, there are
two essential differences. First, chaotic systems lose their predictive capabilities after a certain
time (Devaney , 1989; Banks et al., 1992), yet there exists a finite time in which the dynamics
are predictable. In ill-posed models infinitesimal perturbations to the initial condition cause
a finite divergence in the solution in an arbitrarily (but fixed) short time. Second, while the
dynamics of a chaotic model are not predictable in deterministic terms after a certain time,
these continue to be predictable in statistical terms. For this reason, although being sensitive
to the initial and boundary conditions, a model presenting chaotic properties can be used,
for instance, to capture the essential dynamics and spatio-temporal features of river braiding
(Murray and Paola, 1994, 1997). On the contrary, the dynamics of an ill-posed model cannot
be analysed in statistical terms.

The numerical solution of an ill-posed problem continues to change as the grid is refined
because a smaller grid size resolves larger wave numbers with faster growth rates (Joseph
and Saut , 1990; Kabanikhin, 2008; Barker et al., 2015; Woodhouse et al., 2012). In other
words, the numerical solution of an ill-posed problem does not converge when the grid cell
size is reduced. This property emphasizes the unrealistic nature of ill-posed problems and
shows that ill-posed models cannot be applied in practice.

We present an example of grid dependence specifically related to river morphodynamics un-
der conditions with mixed-size sediment. We consider a case of degradation into a substrate
finer than the active layer, as this is a situation in which the active layer model is prone to be
ill-posed (Section 1). The reference state is the same as in Case B1, yet the sediment is a
mixture of two sizes equal to 0.001 m and 0.010 m. The bed surface is composed of 10 %
of fine sediment. The active layer thickness is equal to 0.05 m, which in this case is repre-
sentative of small dunes covering the bed (e.g. Deigaard and Fredsøe, 1978; Armanini and
Di Silvio, 1988; Blom, 2008). Depending on the substrate composition, this situation yields
an ill-posed model (Chavarrías et al., 2018). When the substrate is composed of 50 % of fine
sediment (Case H1, table 5.3), the problem is well-posed and it is ill-posed when the substrate
is composed of 90 % of fine sediment (Case H2, table 5.3).

We use the software package Delft3D-4 (Lesser et al., 2004) to solve the system of equa-
tions. We stress that the problem of ill-posedness is inherent to the system of equations and
independent from the numerical solver. We have implemented a subroutine that assesses
the well-posedness of the system of equations at each node and time step. The domain is
100 m long and 10 m wide. The downstream water level is lowered at a rate of 0.01 m/h to
induce degradational conditions. The upstream sediment load is constant and equal to the
equilibrium value of the reference state (Blom et al., 2017). The cells are square and we con-
sider three different sizes (table 5.3). The time step varies between simulations to maintain a
constant value of the CFL number.

Figure 5.2 presents the bed elevation after 10 h. The result of the well-posed case (H1, left
column) is grid independent. The result of the ill-posed case (H2, right column) changes
as the grid is refined and presents an oscillatory pattern characteristic of ill-posed simulations
(Joseph and Saut , 1990; Woodhouse et al., 2012; Barker et al., 2015; Chavarrías et al., 2018).
The bed seems to be flat in the ill-posed simulation with a coarser grid (figure 5.2b). This is
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Case f I
1 [−] ∆x [m] mathematical character

H1a 0.5 0.50 well-posed
H1b 0.5 0.25 well-posed
H1c 0.5 0.10 well-posed
H2a 0.9 0.50 ill-posed
H2b 0.9 0.25 ill-posed
H2c 0.9 0.10 ill-posed

Table 5.3: Cases showing the effect of grid cell size on the numerical solution of well-
posed and ill-posed models.

because oscillations grow slowly on a coarse grid and require more time to be perceptible.
The waviness of the bed is seen in the result of the check routine, as it predicts ill-posedness
only at those locations where the bed degrades (the stoss face of the oscillations). The fact
that the model is well-posed in almost the entire domain in the ill-posed case solved using
a cell sizes equal to 0.25 m (H2b, figure 5.2d) and 0.10 m (H2c, figure 5.2f) does not mean
that the results are realistic. Non-physical oscillations have grown and vertically mixed the
sediment such that the situation is well-posed after 10 h (Chavarrías et al., 2018). We provide
a movie of figure 5.2 in the online supplementary material.

In the above idealised situations it is evident that the oscillations are non-physical and it is
straightforward to do a converge test to clarify that the solution is grid dependent. In complex
domains in which several processes play a role, it is more difficult to associate oscillations
to ill-posedness. Moreover, in long term applications the growth rate of perturbations may
be fast compared to the frequency at which model results are assessed, which may hide the
consequences of ill-posedness. If one studies a process that covers months or years (and
consequently analyses the results on a monthly basis) but perturbations due to ill-posedness
grow on an hourly scale, it may be difficult to identify that the problem is ill-posed. Using
poor numerical techniques to solve the system of equations also contributes to hiding the
consequences of ill-posedness as numerical diffusion dampens perturbations. These factors
may explain why the problem of ill-posedness in mixed-sediment river morphodynamics is not
widely acknowledged.

In the river morphodynamics community, the term ellipticity has been used to refer to ill-
posedness of the system of equations in contrast to hyperbolicity, which is associated to
well-posedness (Ribberink , 1987; Mosselman, 2005; Stecca et al., 2014; Siviglia et al., 2017;
Chavarrías et al., 2018). In general the terms are equivalent, but not always. We consider a
unit vector n̂ in the direction (x, y), n̂ = (n̂x, n̂y). The system of equations ((5.1)) is hyper-
bolic if matrix A = Ax0n̂x + Ay0n̂y diagonalises with real eigenvalues ∀n̂ (e.g. LeVeque,
2004; Castro et al., 2009). Neglecting friction and diffusive processes (i.e., B0 = Dx0 =
Dy0 = 0), hyperbolicity implies that the eigenvalues of M0 (equation ((5.17))) are real. In
this case, as the growth rate of perturbations (i.e., the imaginary part of the eigenvalues of
M0) is equal to 0 regardless of the wave number, the system of equations is well-posed. As
the coefficients of A are real, complex eigenvalues appear in conjugate pairs. This means
that if A has a complex eigenvalue (i.e., the problem is not hyperbolic), at least one wave
will have a positive growth rate. Neglecting friction and diffusive processes, non-hyperbolicity
implies that infinitely large wave numbers have a positive growth rate. We conclude that, in the
absence of diffusion and friction, lack of hyperbolicity implies ill-posedness. Note that elliptic-
ity (i.e., the eigenvalues of A are all complex) is not required for the problem to be ill-posed,
as it suffices that the problem is not hyperbolic. When considering diffusion and friction even
when A has complex eigenvalues, the imaginary part of the eigenvalues of M0 may all be
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Figure 5.2: Simulated bed elevation (surface) and mean grain size at the bed surface
(colour) of a well-posed case (left column, H1, table 5.3) and an ill-posed
case (right column, H2, table 5.3). In each row we present the results for
varying cell size. The colour of the x− y plane shows the result of the routine
that checks whether the conditions at each node yield a well-posed (green)
or an ill-posed (red) model.

negative and the problem well-posed.

Finally, well-posedness and hyperbolicity are similar terms when dealing with problems arising
from conservation laws and changes with time, as hyperbolicity guarantees the existence of
wave solutions (Lax , 1980; Courant and Hilbert , 1989; Strikwerda, 2004; Toro, 2009; Dafer-
mos, 2010; Bressan, 2011; Dafermos, 2016). In communities such as materials science, it is
the term hyperbolicity that is associated to ill-posedness, as a smooth solution of, for instance
the stress, requires that the system is elliptic (Knowles and Sternberg, 1975, 1976; Veprek
et al., 2007).
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6 Analytical Results

In this section we analytically study the properties of the regularization strategies. To this end,
we simplify the system of equations by considering two sediment size fractions only (Section
6.1). Moreover, we assume that the Froude number is sufficiently small such that it is rea-
sonable to assume that changes in flow are orders of magnitude faster than morphodynamic
changes (i.e., quasi-steady flow assumption (De Vries, 1965; Cao and Carling, 2002; Colom-
bini and Stocchino, 2005)). Finally, we assume that the active layer thickness is constant.
In Section 6.2 we describe the procedure to test for ill-posedness. We report the results of
the regularization strategy consisting of a modification of the time scale of mixing-processes
(Section 6.3) and of including diffusion in the active layer equation (Section 6.4).

6.1 Two Sediment Size Fractions Model
In this section we write the model for two sediment size fractions. We use the notation in-
troduce introduced by Chavarrías et al. (2019a). Subscripts k and l refer to the grain size
fraction while the subscript j refers to the direction (i.e., x and y). The parameters are a
generalization of the parameters used by Stecca et al. (2014) and Chavarrías et al. (2018) to
the x and y direction.

Parameter ψj [−] represents the sediment transport intensity (e.g. De Vries, 1965; Lyn and
Altinakar , 2002; Stecca et al., 2014) and ranges between 0 (no sediment transport) and
O(10−2) (high sediment discharge):

ψj =
∂qbj

∂qj
. (6.1)

Parameter cjk ∈ [0, 1] [−] represents the sediment transport intensity of fraction k relative to
the total sediment transport intensity:

cjk =
1

ψj

∂qbjk

∂qj
. (6.2)

Parameter γjk [−] represents the sediment transport intensity of fraction k relative to the
fraction content of sediment of fraction k at the interface between the active layer and the
substrate:

γjk = cjk − f I
k , (6.3)

Parameter χjk [−] represents the nondimensional rate of change of the total sediment trans-
port rate with respect to the change of volume of sediment of size fraction k in the active layer:

χjk =
1

uj

∂qbj

∂Mak

. (6.4)

Parameter djk,l [−] represents the nondimensional rate of change of the sediment transport
rate of size fraction l with respect to the volume of sediment of size fraction k in the active
layer:

djk,l =
1

ujχjk

∂qbjl

∂Mak

. (6.5)

Parameter µjk,l [−] represents the rate of change of the sediment transport rate with respect
to the volume of sediment in the active layer relative to the fraction content of sediment of
fraction k at the interface between the active layer and the substrate:

µjk,l = djk,l − f I
k . (6.6)
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Parameter Rj < 0 [m2/s] represents the effect of the bed slope on the direction of the sedi-
ment transport rate:

Rj =
∂qbj

∂sj
, (6.7)

where sj = ∂η/∂j. Parameter rjk [−] represents the effect of the bed slope on the direction
of the sediment transport rate of fraction k relative to the total effect:

rjk =
1

Rj

∂qbjk

∂sj
. (6.8)

Parameter ljk [−] represents the effect of the bed slope on the direction of the sediment
transport rate of fraction k relative to the fraction content of sediment at the interface between
the active layer and the substrate:

ljk = rjk − f I
k . (6.9)

Using this notation, the diffusive matrix in y direction considering two sediment size fractions
is:

Dy0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 Ry 0
0 0 0 Ryly1 0


(6.10)

The system matrix in x direction is:

Ax0 =


0 1 0 0 0

u2
(

1
Fr2
− 1
)

2u 0 u2

Fr2
0

0 0 u 0 0
−uψx ψx 0 0 uχx1

−uψxγx1 ψxγx1 0 0 uχx1µx1,1


(6.11)

The system matrix in y direction is:

Ay0 =


0 0 1 0 0
0 0 u 0 0
u2

Fr2
0 0 u2

Fr2
0

0 0 ψy 0 0
0 0 ψyγy1 0 0


(6.12)

We have omitted the subscript 0 to facilitate reading.
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6.2 Ill-posedness Test
In this section we study under which conditions the model accounting for two sediment size
fractions is ill-posed. To this end, we study the sign of the imaginary part of the eigenvalues of
the model as the wavenumbers tends to infinity. In order to obtain analytical solutions, apart
from considering two sediment size fractions, we consider quasi-steady flow. Under these
conditions, the model has two eigenvalues only. The eigenvalues ω of the model are found as
the roots of the characteristic polynomial:

R =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 ω 0
0 0 0 0 ω

−M0 .

(6.13)

We consider three cases in which the wavenumber tends to infinity:

1 kwx = kwy → inf,
2 kwx = 0 and kwy → inf,
3 kwx → inf and kwy = 0.

In Case 1, the maximum imaginary part of the two eigenvalues is equal to:

ωlim
i =

Cfg

u
χx1 (ry1 − dx1,1)

Fr2
(
4Fr2 − 3

)
Fr2 − 2

+ ωlim
if

, (6.14)

where ωlim
if

[rad/s] is the maximum imaginary part of the eigenvalues neglecting the effect of
friction as found by Chavarrías et al. (2019a):

ωlim
if

=
−u2χx1

Ry

[
χx1ly1 (ry1 − dx1,1) + elim

x (ry1 − cx1) + elim
y (ry1 − cy1)

]
(6.15)

where:

elim
x =

ψx

2− Fr2
, (6.16)

elim
y =

ψy

2− Fr2
. (6.17)

The order of magnitude of ωlim
if

is significantly larger than the additional term due to friction.
For this reason, in Case 1 the effect of friction is negligible. Chavarrías et al. (2019a) studied
Equation ((6.15)) and found that it can be both positive (i.e. the model is well-posed) or neg-
ative (i.e. the model is ill-posed). For this reason, in testing for ill-posedness of the system of
equations we must test that it is well-posed for both wave numbers tending to infinity.

In Case 2, the maximum imaginary part of the two eigenvalues is equal to 0. For this reason,
this case does not limit well-posedness of the model. Worded differently, in testing well-
posedness of the model it is not necessary to study the case in which kwx = 0 and kwy →
inf.

In Case 3, the expression of the maximum imaginary part of the eigenvalues is too com-
plicated to analyze. However, numerical tests show that that it can be positive. Worded
differently, this direction needs to be tested.
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6.3 Effect of Modifying the Time Scale of Mixing Processes in the 2D Model
In this section we analytically study the effect of modifying the time scale of mixing processes.
We compute the characteristic polynomial of matrix M (Equation (5.17)). The characteristic
polynomial has complex coefficients and is of second order. We solve the polynomial equation
and compute the limit as both wave numbers (i.e., in the x and y direction) tend to infinity (i.e.,
short wave perturbations). Finally, we study the imaginary component of the resulting solution.

The regularization parameter α multiplies the whole imaginary part of the eigenvalues as the
wave number tends to infinity (the details of the analysis will be included in a future appendix).
For this reason, parameter α changes the absolute value of the growth rate of perturbations
but not the sign. Worded differently, using parameter α one does not change whether pertur-
bations grow or decay. We conclude the modification of the time scale of the mixing processes
does not regularize the two-dimensional active layer model.

The details are found in Appendix B.

6.4 Effect of Adding Diffusion to the Active Layer Equation in the 2D Model
In this section we conduct the same analysis as the one performed in Section 6.3 here con-
sidering the effect of the regularization strategy consisting of including diffusion in the active
layer equation. We find the following results. First, a certain amount of diffusion in the stream-
wise direction (i.e., κHx 6= 0) always regularizes a situation that is ill-posed if diffusion is not
taken into consideration. The minimum amount of diffusion necessary to regularize the model
can be computed analytically for a simplified case (i.e., two sediment size fractions assuming
quasi-steady flow). The diffusion coefficient in the transverse direction (κHy) has no effect in
regularizing the model. The details are found in Appendix C.

We present an example of the effect of diffusion. To this end, we consider Case H2 (Tables 5.1
and 5.3). This case is ill-posed when no diffusion is taken under consideration (Figure 6.1a).
When diffusion is equal to −5 m2/s the same conditions yield a well-posed model (Figure 6.1c).

Figure 6.1: Growth rate of perturbations added to the reference case (tables 5.1 and 5.3)
as a function of the wave number and the wavelength: (a)-(b) κHx = 0, (Case
H2, ill-posed), (c)-(d) κHx = −5m2/s, (Case H2D, well-posed). The subplots
in the two columns show the same information but highlight the behaviour for
large wave numbers (left column) and for large wavelengths (right column).
Red and green indicates growth and decay of perturbations, respectively.
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Ideally, the regularization technique that we propose here also regularizes the one-dimensional.
This would mean that we have one single regularization strategy for the active layer model
independently on whether the model is one-dimensional or two-dimensional. Interestingly,
preliminary results show that diffusion does not regularize the one-dimensional system of
equations.
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7 Implementation

In this section we first describe the previous implementation of the routines to identify condi-
tions in which the active layer model is ill-posedness in Delft3D-4 (Section 7.1). This allows
us to identify caveats and limitations. In Section 7.2 we describe the new implementation of
the routines to check for ill-posedness. In Section 7.3 we describe the implementation of the
regularization strategy.

7.1 Existing Routines
In this section we sketch the existing routines to identify ill-posed conditions in Delft3D-4.
The implementation is done on a branch (https://svn.oss.deltares.nl/repos/
delft3d/branches/research/Technical%20University%20of%20Delft/20161020_
ellipticity_check) created from the trunk of Delft3D-4 at revision 6118 (20 October
2016 13:17:24).

The output of the implemented routines is a new output variable named checkval that
indicates whether the model is, at the node under consideration, well-posed (checkval=0)
or ill-posed (checkval=1). The check is conducted every time a map-type output is saved.
The property is computed at the cell centers.

To compute this new variable, the function trisol is modified. After the flow computation of
the second half time step, the test of the mathematical character of the model is conducted.
The variables of the new routines are allocated (function hirano_check_init). Subse-
quently, the function erosed is called in a loop once for each dependent variable. In each
call to erosed, one dependent variable is perturbed and the sediment transport rate for each
size fractions is computed. For instance, when the flow discharge in the x direction is per-
turbed, we compute qbk(qx + dqx). A last call to the function yields the unperturbed sediment
transport rate for each size fractions.

The function trisol continues normally until function bott3d. This function is modified
to obtain as output the volume fraction content of sediment at the interface between the ac-
tive layer and the substrate. After calling bott3d, function trisol calls a new function
hirano_check. This new function yields as output the variable checkval.

In hirano_check, the matrices Ax and Ay are built. Then, the eigenvalues of each matrix
are computed using the routine rg from EISPACK. If at least one of the eigenvalues of one of
the matrices has an imaginary component different than 0, the variable checkval is set to
1. Otherwise, it is equal to 0.

As we only check the eigenvalues of matrices Ax and Ay, we are neglecting the effect of
the diffusive component due to the bed slope effect, as well as the effect of friction. At this
moment, but not when it was implemented, we are aware of the limitations of this implemen-
tation.

The derivatives are computed numerically. This is beneficial, as it allows for checking the
mathematical character of the model for all closure relations for the sediment transport rate
and hiding functions. However, this is done at the expenses of looping on erosed.

The routines check the mathematical character only before a map-type output is saved. Ide-
ally, the mathematical character should be checked for each time step.

Finally, the routines are implemented in Delft3D-4 (curvilinear), while the future is Delft3D-FM.
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This may not be a strong limitation, as the functions could be easily adapted to the Delft3D-
FM.

7.2 Implementation of the new Detection Routines
In this section we describe the new implementation of the routines to detect ill-posedness.
The implementation is done on a branch (https://svn.oss.deltares.nl/repos/
delft3d/branches/research/TechnicalUniversityofDelft/20190405_Hirano_
regularisation) created from the trunk of Delft3D-FM at revision 63587 (5 April 2019
07:36:30).

In avoiding the loop in morphology to numerically compute the necessary sediment trans-
port derivatives, we have implemented two routines that compute the derivatives. These
routines are called when calling routine fm_erosed, in which morphodynamic update is
computed. This is the most reasonable location, as the sediment transport parameters are
readily available. The derivates can be computed either analytically or numerically by calling
sedtrans_analytical_derivatives or sedtrans_numerical_derivatives,
respectively. When computing analytically, the expressions in Appendix A are evaluated. Fi-
nite differences are used to compute the derivatives numerically. The benefit of the analytical
expressions is that it is more accurate and it is expected to be faster, as less calls are needed
than when computing the derivatives numerically. This computational time will largely depend
on the number of size fractions. For the cases we have tested with up to three size fraction,
we have not observed any significant time difference between the two methods. The draw-
back of the analytical expressions is that it is currently implemented for Ashida and Michiue
(1971) only. The benefit of the numerical computation of the derivatives is that is available for
all closure relations (assuming they are of the form describe in Section 2.2).

Once the derivatives are computed, a new function fm_hirano_illposed_check that
provides as output whether the model is ill-posed, is called in routine step_reduce. In
this new function matrix M is built. Contrary to the previous implementation, this matrix
depends on the wave number. Ill-posedness is defined for infinitely short waves. We select
an arbitrary default short wavelength equal to 0.01 m (the value is set as input). By checking
the eigenvalues for: (1) kwx = 2π

0.01
and kwy = 0, and (2) kwx = kwy = 2π

0.01
we are certain

than the behaviour for short wave lengths is captured. It is not necessary to test the conditions
for kwx = 0 and kwy = 2π

0.01
as we have proven analytically that, in this case, for infinitely

short waves the imaginary part of the eigenvalues is negative or equal to zero.

7.3 Implementation of the Regularization Strategy
In this section we describe the implementation of the regularization strategy consisting in
adding diffusion to the active layer equation (Section 6.4). This is done in the same branch as
the new routines to check for ill-posedness (Section 7.2).

After the conditions at each cell are tested and we know the cells in which the model is ill-
posed, we compute the cells in which the regularization strategy will be applied. One option is
that the regularization strategy is applied only at the cells in which the model is ill-posed. This,
however, may yield an unstable solution. This is because, in an ill-posed case, a short wave
pattern of aggradational and deggradation follows from a short wave pattern of infinitesimal
perturbations in bed elevation. Considering a case that is only ill-posed under degradational
conditions (as it usually happens), the pattern of ill-posed cells also presents short wave
perturbations. As a consequence, the regularization strategy is applied in a discontinuous
manner. This is physically unrealistic, as the strategy is derived to account for the effect
of mixing waves with a length scale several times the flow depth. For this reason, we have
implemented the option that all cells at a certain distance from an ill-posed cell are regularized.
The distance is user-specified.
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In solving the regularized active layer equation (Equation (3.2)), we split it into the diffusive
component and the advective component. We label as advective component the original part
of the equation. To solve for the diffusive component, we treat the volume fraction content
as a constituent and use the solver in routine transport by setting the source, sink, and
advective velocity equal to zero. The diffusive component is added to the advective one when
updating the bed stratigraphy in routine bed_composition_module.

The diffusion coefficient is at this moment user-specified. It is possible to numerically compute
the minimum amount of difusion that guarantees that the model is ill-posed. This is, however,
expensive numerically. One consequence is that diffusion is the same everywhere in the
domain.
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8 Results

In this section we present the results. We test the implementation of the diffusive flux (Section
8.1) and apply the regularization to a laboratory experiment (Section 8.2) and a field case
(Section 8.3).

8.1 Diffusion Test
In testing the implementation of the regularized active layer equation solver, we consider an
idealized rectangular domain without flow. The initial condition is a flat bed with uniform grain
size distribution consisting of Fraction 1 only. The grain size distribution of a rectangle situ-
ated in the centre of the domain is composed of Fraction 2 only (Figure 8.1). The diffusion
coefficient is set to −1× 10−2 m2/s. The grain size distribution after 5 s is shown in Figure 8.2.

Figure 8.1: Initial condition of the numerical run to test the implementation of the regular-
ized active layer solver.

To test whether the order of magnitude of the estimated diffusion is realistic, we compare the
results with the analytical solution of a Dirac delta placed at the centre of the domain with
coordinates (x0,y0):

Fa =
A

4πt
√
κxκx

exp

(
−(x− x0)2

4κxt
− (y − y0)2

4κyt

)
. (8.1)

The analytical solution after 5 s is shown in Figure 8.3.

The order of magnitude of diffusion is the same. Note that the initial condition is different and
for this reason it is not possible to exactly compare the solutions. It is not possible to impose
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Figure 8.2: Condition after 5 s of the numerical run to test the implementation of the reg-
ularized active layer solver.

a Dirac delta as initial condition in the numerical simulation. Note also that for very small
times, the analytical volume fraction content is larger than 1, which cannot be handled by the
numerical solver.

In the numerical solution, there are changes at the right domain edge. This is because this
domain is open and no boundary condition is prescribed. The initial condition of the ghost
node propagates inside the domain. This effect occurs because we are applying the regular-
ization strategy at all nodes (i.e., including ghost nodes) to force diffusion in the whole domain.
When the regularization strategy is applied only at the cells in which the model is ill-posed,
this effect will not be present.
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Figure 8.3: Condition after 5 s of the analytical solution.

8.2 Flume Experiment
In this section we apply the regularization strategy to a case inspired in the laboratory ex-
periments conducted under condition in which the active layer model is ill-posed (Chavarrías
et al., 2019b). The domain is 10 m long and 1 m wide. The grain size distribution is com-
posed of two sediment size fraction with characteristic grain sizes equal to 2.108× 10−3 m
and 5.496× 10−3. The upstream water discharge is equal to 0.15 m2/s. The initial bed slope
is equal to 2.7× 10−3. The friction coefficient is equal to 0.0104. The initial water depth is
0.204 m, which is under normal flow conditions. The downstream water level is lowered at a
rate equal to 8 cm in 8 h. The upstream bed level is lowered at the same rate. The active layer
thickness is equal to 1 cm. The substrate is composed of coarse sediment but for a patch
between x = 1m and x = 9m along the whole width and 2 cm below the bed surface. The
patch is composed of fine sediment only. The sediment transport rate is computed using the
closure relation by Ashida and Michiue (1971).

In Simulation 1, we do not apply the regularization strategy and we use a coarse grid dis-
cretiation (∆x = 0.25m, ∆y = 0.20m). Figure 8.4 shows the bed elevation and mean
grain size after 2.02 h. The routine predicts that the situation is ill-posed and a large physically
unrealistic wave develops.

Simulation 2 is equal to Simulation 1 but for the fact that we use a finer grid (∆x = ∆y =
0.05m). The physically unrealistic oscillation is larger, as we expect from an ill-posed simu-
lation.

Simulation 3 is equal to Simulation 1 but for the fact that we apply the regularization strategy.
This is applied at the cells which are predicted to be ill-posed only. The diffusion coefficient is
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equal to −0.15 m2/s, which is the minimum amount to regularize this case. We observe that
there are no large oscillations, but we observe small perturbations.

Simulation 4 is equal to Simulation 3 but for the fact that we apply the regularization strategy
at all cells which at less than 0.5 m from a cell that is detected as ill-posed. This distance is
based on the length scale of the mixing waves observed in the laboratory experiments. In this
case, the simulation remains stable.

Figure 8.4: Bed elevation and mean grain size at the bed surface in Simulation 1 (ill-
posed, not regularized, and coarse grid).
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Figure 8.5: Bed elevation and mean grain size at the bed surface in Simulation 2 (ill-
posed, not regularized, and fine grid).
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Figure 8.6: Bed elevation and mean grain size at the bed surface in Simulation 3 (ill-
posed, regularized only at ill-posed cells, and fine grid). The green (red) red
colour in the x − y plane indicate the locations that would we well-posed
(ill-posed) if the model would have not been regularized.
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Figure 8.7: Bed elevation and mean grain size at the bed surface in Simulation 4 (ill-
posed, regularized at cells within a radious, and fine grid). The green (red)
red colour in the x− y plane indicate the locations that would we well-posed
(ill-posed) if the model would have not been regularized.
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8.3 Field Application
In this section we apply the regularization strategy to a field application. We consider the
schematization of the bifurcation area around Pannerdensch (simulation delft3d_4-rijn-2017-v1).
We have converted this simulation from Delft3D-4 to Delft3D-FM. The original model runs a
set of alternating constant discharges by using the SMT (Yossef et al., 2008). This feature
is not implemented in Delft3D-FM. We consider one single discharge equal to 2250 m3/s. In
an initial run, we obtain steady flow conditions for this discharge. This state is subsequently
used as initial condition. We run for 1 h of morphodynamic update after 1 h of spin-up. Testing
whether the Delft3D-FM simulation provides similar results as the Delft3D-4 one is outside the
scope of this project. Figure 8.8 shows a view of the grid.

Figure 8.8: Computational domain.

We run a simulation without applying the regularization strategy and a simulation regularizing
all the cells at less than 150 m from an ill-posed node using a diffusion coefficient equal to
−3 m2/s. The distance guarantees that the regularization strategy is applied at sufficiently
large regions rather than at individual cells. The diffusion coefficient is a conservative estimate
based on characteristic conditions. However, we cannot guarantee that this value is enough
to regularize all conditions in the domain. We observed unrealistic patterns in the regularized
simulation. We noted that not all cells had an initial grain size distribution below the first top
layer. While the current implementation in Delft3D-FM of the active layer model can deal with
such cases, it is unclear what the regularized model does. It is important to note that, for
instance, ill-posedness depends on the grain size distribution at the interface between the
active layer and the substrate. In the original schematization, the active layer thickness is a
function of the flow depth. In principle, the regularization strategy can be applied in cases with
variable active layer thickness. This option, however, has not been tested and has not been
considered in the analytical study.

For these reasons, we consider a modified grain size distribution in which there is always
sediment underneath the active layer. Arbitrarily, we set a layer of practically infinite thickness
composed of sediment between 0.001 m and 0.002 m. We also set the active layer thickness
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to a constant value equal to 1 m.

Figure 8.10 shows the cumulative erosion or sedimentation after 1 h of morphodynamic up-
date for the case in which the regularization strategy is not applied. We focus on a 6 km region
of the Boven-Rijn (Figure 8.9). Figure 8.10 shows the locations in which the active layer model
is predicted to be ill-posed. We observe large aggradation and degradation (up to 1 cm) in
neighbouring cells at the locations in which the model is ill-posed. It is important to note that in
Figure 8.10 we show the locations in which the model is ill-posed at a certain time. It can (and
has) been ill-posed at other locations before. However, as the simulation time is short, it is a
good approximation of the overall condition. A pattern of large aggradation and degradation
in neighbouring cells is the expected consequence of ill-posedness.

In Figure 8.12 we show the results of applying the regularization strategy. We observe that the
pattern of large aggradation and degradation at the right bank has decreased substantially,
which is the expected consequence of regularizing an ill-posed case. We also note large
aggradation in particular cells, especially in the left side of the river. We do not think that
this pattern is physically realistic. We think that this unexpected result may be due to the fact
that we have not considered the interaction between the regularization technique and other
elements of this schematization such as fixed layers. For instance, the current implementation
diffuses sediment on top of groynes, which is not physically realistic. We also note that in the
current implementation diffusion is not restricted to active cells. This means that changes in
the grain size distribution diffuse from ill-posed location in the main channel to the floodplain.

The explicit time solver of Delft3D-FM imposes restrictive time steps when considering diffu-
sion processes in which the Péclet number is large (i.e., when diffusion is large relative to
advection). This time restriction is overcome by limiting the time step based on advection
processes only. As a consequence, the diffusion computed by the model is smaller than in-
tended. This may have consequences if the necessary diffusion to regularize the active layer
model is large compared to the advection. This cases would not be regularized regardless of
the prescribed diffusion coefficient. It may be possible that in the current simulations diffusion
computed by the model is smaller than intended and it is actually ill-posed.

Overall, we consider this exercise as a preliminary test. We do not think that the current
implementation is ready for a complex field scenario given the fact that we have considered a
simplified case in deriving and testing the regularization strategy.
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Figure 8.9: Area of interest.
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Figure 8.10: Bifurcation simulation without regularization strategy.
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Figure 8.11: Ill-posedness domain.
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Figure 8.12: Bifurcation simulation with regularization strategy.
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9 Recommendations

In this section we discuss the following steps to make the regularization strategy general and
applicable at field cases.

The theoretical analysis should be extended to consider the case of a variable active layer
thickness and the interaction with fixed layers. We have assumed that the friction coeffi-
cient is independent on the flow depth and grain size. We do not expect that the domain of
ill-posednes significantly depends on this assumption. This is because the simplifications in-
herent to the active layer and sediment transport models appear to us significantly cruder than
the simplification of the friction coefficient. However, including this effect would strengthen and
generalize the analysis. In order to include it, one would need to linearise the friction equation
to obtain its change with time. The system of equations would be composed of one more
equation, which would increase the difficulty of analytical findings.

Further testing is required as regards to the routines for testing for ill-posedness. We have
tested that the matrices are correct with only up to 3 size fractions, none of which is tracer sed-
iment. In principle, the methodology should be able to deal with tracer sediment, but maybe
matrices become ill-conditioned under some circumstances, as the sediment transport ca-
pacity of two size fractions in the mixture is the same when dealing with tracer sediment.
We have tested the matrices when sediment transport occurs in one direction only. Further
testing is required to verify that the grid orientation does not play a role. We have verified
that the matrices are correctly built and the eigenvalues are correct when using the sediment
transport relation by Ashida and Michiue (1971). This has been done computing the deriva-
tives both analytically and numerically. Further testing is required to verify that no unexpected
implementation problems arise when using different sediment transport relations.

It is important to prevent diffusion in non-active cells. Similarly, there is a need to implement
a mechanism to deal with structures such as groynes. A routine to estimate diffusion is also
important to make the tool applicable to general cases. Currently, the same amount of diffu-
sion is applied at all regularized cells. Ideally, the amount of diffusion would be computed for
each case independently (i.e., spatially varying diffusion).

The implementation of the regularization strategy needs to be further tested. Similar exercises
as the one conducted in Section 8.1 need to be done including, at least, more size fractions,
tracer sediment, structures, variable active layer thickness, and fixed layers.

Updating the bed using the right amount of diffusion is crucial to regularize the system of
equations. In the current trunk version of Delft3D-FM, it is possible to limit the time step such
that the right amount of diffusion is used in the computation. However, this was developed
after the research branch was created. For this reason, it is uncertain whether the correct
amount of diffusion is used. Overall, the research branch needs to be merged with the trunk.
Otherwise, we cannot benefit from further development and fixes of the trunk.
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10 Conclusions

The model that accounts for mixed-size sediment in morphodynamic processes (i.e., the ac-
tive layer model) may be ill-posed under certain circumstances. When the model is ill-posed is
loses its predictive capabilities, as it is unstable to short wave perturbations and the solution
does not converge when the numerical grid is refined. Chavarrías et al. (2019b) devised a
regularization strategy to guarantee that the model is unconditionally well-posed. The strat-
egy was tested under one dimensional conditions only. In this document we show that the
extension to two dimensions of the strategy devised by Chavarrías et al. (2019b) does not
regularize the two-dimensional version of the active layer model.

We propose a different regularization strategy and we prove that it yields an unconditionally
well-posed model. This second strategy is based on adding a diffusive flux to the active layer
equation which accounts for mixing processes occurring at a small scale not resolved by the
model.

We implement a routine to test for ill-posedness in Delft3D-FM. This routine considers the
effect of the bed slope on the sediment transport direction, contrary to the previous imple-
mentation. Moreover, we expect the computation to be faster.

We implement and test the regularization strategy. We use it to regularize a model represent-
ing the a laboratory experiment conducted under conditions in which the active layer model
is ill-posed. The results are satisfactory. While the non-regularized simulation presents physi-
cally unrealistic oscillations, the regularized simulation remains stable.

Finally, we convert a Delft3D-4 schematization of the bifurcation area around Pannerden to
Delft3D-FM and run two simulations to test the effect of the regularization strategy on a field
scenario. The non-regularized run presents a pattern of aggradation and degradation com-
patible with ill-posedness. The regularized run decreases this pattern. However, aggradation
occurs in unexpected areas. This is most probably related to interaction of the regularization
strategy with other functionalities such as fixed layers, and structures. Further development is
required for the regularization strategy to be applicable in general.
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A Sediment Transport Closure Relations and its Derivatives

In this section we write the necessary derivatives to compute matrix M (Equation ((5.17)))
for the closure relations described in Section 2.2. In Section A.2 we describe the closure
relations for accounting for the hiding effect. In Section A.3 we describe the closure relations
to compute the mean grain size.

A.1 Nondimensional Sediment Transport
In this section we describe the closure relations and the derivatives to compute the nondimen-
sional sediment transport rate.

A.1.1 Ashida and Michiue (1971) Nondimensional Sediment Transport
The closure relation for the nondimensional sediment transport rate predicted by Ashida and
Michiue (1971) is:

q∗bk = A (θk − ξkθc)
(√

θk −
√
ξkθc

)
∀k , (A.1)

where A = 17 [−] is a nondimensional coefficient and θc = 0.05 [−] is the nondimensional
critical shear stress.

The derivative with respect to the nondimensional bed shear stress is:

∂q∗bk
∂θk

= A

[
(θk − ξkθc)

2
√
θk

+
(√

θk −
√
ξkθc

)]
∀k . (A.2)

The derivative with respect to the hiding function is:

∂q∗bk
∂ξk

=
−Aθc

2

[
(θk − 3ξkθc)√

ξkθc

+ 2
√
θk

]
∀k . (A.3)

A.1.2 Engelund and Hansen (1967) Nondimensional Sediment Transport
The fractional form (Blom et al., 2016, 2017) of the relation proposed by Engelund and Hansen
(1967) neglecting form drag reads:

q∗bk =
A

Cf

θ
5/2
k ∀k , (A.4)

where A = 0.05 [−] is a nondimensional coefficient.

The derivative with respect to the nondimensional bed shear stress is:

∂q∗bk
∂θk

=
5

2

A

Cf

θ
3/2
k ∀k . (A.5)

The derivative with respect to the hiding function is:

∂q∗bk
∂ξk

= 0 ∀k . (A.6)

A.2 Hiding Relations
In this section we describe the closure relations and the derivatives to account for the hiding
effect.
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A.2.1 Ashida and Michiue (1971) Hiding Relation
The hiding relation by Ashida and Michiue (1971) reads:

ξk =


0.8429

(
dk
Dm

)−1

for dk
Dm
≤ 0.38889(

log10(19)

log10(19
dk
Dm

)

)2

for dk
Dm

> 0.38889
∀k . (A.7)

The derivative with respect to the mean grain size is:

∂ξk
∂Dm

=


0.8429
dk

for dk
Dm
≤ 0.38889

2(log10(19) ln(10))2

Dm

[
ln
(

19dk
Dm

)]3 for dk
Dm

> 0.38889 ∀k . (A.8)

A.3 Mean Grain Size
In this section we describe the closure relations and the derivatives to compute mean grain
size.

A.3.1 Arithmetic Mean Grain Size
The arithmetic mean grain size is:

Dm =
N∑
k=1

Fakdk = dN +
N−1∑
k=1

Fak (dk − dN) . (A.9)

The expression on the right hand side of Equation ((A.9)) accounts for the constrain in Equa-
tion ((2.12)).

The derivative with respect to the volume fraction content of sediment in the active layer is:

∂Dm

∂Fal

= dl − dN l ∈ [1, N − 1] . (A.10)

A.3.2 Geometric Mean Grain Size
The geometric mean grain size is:

Dm = dref2
−φm , (A.11)

where φm [−] denotes the geometric mean grain size in φ-scale:

φm =
N∑
k=1

φkFak , (A.12)

where φk denotes the grain size k in φ-scale:

φk = − log2

(
dk
dref

)
. (A.13)

Parameter dref [m] denotes a reference grain size (e.g. dref = 1mm) to obtain the right
dimensions.
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In terms of the dependent variables of the model and accounting for the constrain in Equation
((2.12)), the geometric mean grain size is:

Dm = dref2
log2

(
dN
dref

)
+
∑N−1
k=1 Fak log2

(
dk
dN

)
, (A.14)

The derivative with respect to the volume fraction content of sediment in the active layer is:

∂Dm

∂Fal

= dN ln(2) log2

(
dl
dN

)N−1∏
k=1

(
dk
dN

)Fak

l ∈ [1, N − 1] . (A.15)
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B Proof that a Modification of the Time Scale of Mixing does not
Regularize the 2D Model

In this section we prove that a modification of the time scale of the mixing processes does not
regularize the active layer model under two-dimensional conditions. To this end, we consider
a case with two sediment size fractions.

In order to study well-posedness of the model, Chavarrías et al. (2019a) computed the max-
imum imaginary part of the eigenvalues assuming quasi-steady flow as the wave number
kwx = kwx → inf. The eigenvalues ω are the solution of the second order characteristic
polynomial:

R =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 ω 0
0 0 0 0 ω

−M0 .

(B.1)

We rewrite their expression as:

The modification of the time scale of the mixing processes is done by using a preconditioning
matrix P such that the linear model is Chavarrías et al. (2019b):

P
∂Q′

∂t
+Dx0

∂2Q′

∂x2
+Dy

∂2Q′

∂y2
+C0

∂2Q′

∂x∂y
+Ax0

∂Q′

∂x
+Ay0

∂Q′

∂y
+B0Q

′ = 0 , (B.2)

where the preconditioning matrix P is:

P =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 αp

 ,

(B.3)

where αp > 1 is a preconditioning factor. The complete matrix of the linear model is in this
case:

M0 = P−1Dx0k
2
wxi + P−1Dy0k

2
wyi + P−1Ax0kwx + P−1Ay0kwy −P−1B0i . (B.4)

We notice that the effect of the preconditioning technique is to divide the last row of matrix
M0 by αp. For this reason, we can easily assess the effect of the preconditioning technique
by considering that variables γx1, γy1, ly1, and µy1,1 of the non-preconditioned system turn
into γx1p = γx1/αp, γy1p = γy1/αp, ly1p = ly1/αp, and µy1,1p = µy1,1/αp in the precon-
ditioned system, respectively.

We substitute the preconditioned variables in the original eigenvalues to write the maxi-
mum growth rate of the preconditioned system as a function of the variables of the non-
preconditoned one:

ωlim
ip =

1

α2
p

[
ωlim

i +
u2χx1

Ry

(1− αp) (ry1 − cx1) elim
x

]
. (B.5)
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Under conditions in which the active layer model is ill-posed, ωlim
i > 0. Given that u

2χx1
Ry

< 0,

(1− αp) < 0, elim
x > 0, and (ry1 − cx1) can be positive, we conclude that the there are

cases in which the modification of the time scale of the mixing processes does not regularize
the system of equations.

A particular case that cannot be regularized is the one in which the sediment transport rate is
computed using the relation by Engelund and Hansen (1967) and the bed slope effect does
not account for the effect of the bed shear stress. Under these conditions:

ry1 = cx1 =
qb1

qb

. (B.6)

In this case it is clear that the sign of ωlim
ip is equal to the sign of ωlim

i regardless of the value
of αp. Moreover, in this particular case, ry1 = cy1 such that:

ωlim
ip =

−u2χ2
x1

Ry

ly1 (ry1 − dx1,1) . (B.7)

As in this case ry1 > dx1,1, the sign of ly1 determines whether the model is well-posed or
ill-posed.
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C Proof that Diffusion in Hirano Regularizes the 2D Model

In this section we prove that diffusion in the active layer equation regularizes the active layer
model considering two sediment size fractions. The matrices in this case are the same as
in the ones presented in Appendix B but for the terms (5,5) in matrices Dx0 and Dy0 which
are equal to −κHx and −κHy, respectively. We compute the eigenvalues as the solution
of a second order characteristic polynomial. In guaranteeing well-posedness, we study the
behavior for large wave numbers. We consider three cases:

1 kwx = kwy → inf
2 kwx = 0 and kwy → inf
3 kwx → inf and kwy = 0

Note that in proving that a modification of the time scales does not regularize the system,
it it sufficient to prove that in one of these cases the regularization strategy is unsuccesful.
However, in proving that diffusion always regularizes the system of equations, it is necessary
to prove that for the three cases the maximum imaginary part of the eigenvalues is negative.

In Case 1, the maximum imaginary part of the eigenvalues is equal to:

ωlim
i =

{
kwx(1−Fr)2+kwy

2−Fr2
(−κHx − κHy) for − κHx − κHy −Ry ≥ 0

kwx(1−Fr2)+kwy

2−Fr2
Ry for − κHx − κHy −Ry < 0

. (C.1)

We see that the growth rate is negative regardless of the value of the diffusion coefficients.
Thus, Case 1 does not limit well-posedness of the model.

In Case 2, the maximum imaginary part of the eigenvalues is equal to:

ωlim
i =

{
k2

wyRy for κHy +Ry ≥ 0
−k2

wyκHy for κHy +Ry < 0
. (C.2)

We see that the growth rate is negative regardless of the value of the diffusion coefficients.
Thus, Case 2 does not limit well-posedness of the model.

In Case 3, the maximum imaginary part of the eigenvalues is equal to:

ωlim
i =

−ψ∗xCfg

u
ωlim∗

i , (C.3)

where:

ωlim∗

i =

{
χx1γx1
κ∗Hx

− Fr∗ for ∆ω ≤ 0
χx1γx1
κ∗Hx

− Fr∗ ψ
∗+∆ω

ψ∗
− Fr2∆ω

ψ∗
for ∆ω > 0

, (C.4)

where κ∗Hx < 0 [−] denotes a nondimensional diffusion coefficient:

κ∗Hx =
−κHxCfg

u3
, (C.5)

parameter ψ∗x > 0 [−] denotes a Froude-dependent value ψx:

ψ∗x =
ψx

1− Fr2 , (C.6)
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parameter Fr∗ < 0 [−] denotes a function of the Froude number:

Fr∗ =
3Fr4

Fr2 − 1
, (C.7)

and parameter ∆ω [−] denotes a discriminant between the two branches of the solution:

∆ω = −
(
Fr∗ + Fr2

)
κ∗Hx − ψ∗x + χx1µx1,1 . (C.8)

In Case 3 there is a minimum amount of diffusion in the x direction necessary to guarantee
that the growth rate is negative. As diffusion tends to 0, the sign of the growth rate depends
on γx1, which is consistent with the analysis based on the one-dimensional model by Stecca
et al. (2014) and Chavarrías et al. (2018).

For the case that ∆ω > 0, the minimum amount of diffusion can be computed implicitly only.
However, we can compute the diffusion coefficient explicitly for the case ∆ω < 0:

κHxmin
=
u3χx1γx1

CfgFr∗
. (C.9)
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