
QI 

—. 

. 

Koikman, P.A. 
Discharge relations for 
hydraulic structures an. 

IL-uIh/ iiiiU 

Discharge relations for hydraulic 
structures and head losses from 
different components 

Desk study for Rijkswaterstaat and 
the International Association for Hydraulic Research, 
performed in cooperation with 
the Delft University of Technology 

C67 

BSW-CW ( 
BOtJ WSPEUR WERK 

CONSTRUCTIES EN WATER 

December 1989 
* 

Z2331 

Q 953 	 delft hydraulics 



Preface 

This report "Discharge Relations of Hydraulic Structures and Head Losses from 

Different Components" is conceived as part III of the future IAHR manual about 

discharge relations and losses in general. Part 1, which is presented by 

Dr. D. Miller will deal with losses in internal flow systems, and part II 

(Dr. W.M. Hager) will deal with the design of discharge measuring structures. 

The content of this part of the rnanual is purely based on literature. It is 

providing designers both background information and easily applicable data. 

There are much data on discharge relations available and so the selection of 

topics and literature was one of the problems the author had to cope with and 

sometimes arbitrary decisions had to be taken. The problem was also the non-

uniformity of symhols, and matters would have been easier when not at some 

time the water level and at another time the energy level had been introduced 

as a reference for the hydraulic condition. It was considered to be unprac-

tical to redesign all figures, but for all the figures the meaning of the 

applied symbols is given. 

It was inevitable that once again use was made of the design manuals of the 

Vickburg Waterways Experiment Station of the US Army and the US Bureau of 

Reclamation, the data of which are used worldwide because of their concise and 

user-friendly presentation. When presented here, however, all results were 

transormed into a dimensionless form. 1 could also make use of the open-

channel-flow textbook by prof. E. Naudascher which fortunately had just been 

published. 

This part III is certainly not sufficiently complete, to cover all the needs 

for design, but while also being a general introduction, a certain conciseness 

was aimed at. Only after a certain period of use and after receiving comments 

from users gaps may be filled. 

1 got help from a few colleagues of DELFT HYDRAULICS and RIJKSWATERSTAAT who 

corrected initial errors and indicated omissions. In particular 1 wish to 

thank prof. J. Battjes of Delft University of Technology for his close reading 

of the equations, symbols and text of the first draft, and prof. P. Novak of 

New Castle University for his corrections and proposed additions. 

RIJKSWATERSTAAT financed, within the framework of the Hydraulic Structures 

Research (BSW-CW), the final editing of this report. This edition has been 

published in a limited number of copies, as a DELFT HYDRAULICS' report Q953. 

December 1989 

P.A. Kolkman 
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1. GENERAL ASPECTS OF DISCHARGE RELATIONS AND LOSSES 

1.1 Introduction 

Hydraulic losses are among the classic research topics in laboratories for 

hydraulic research, and a continuous flow of publications has been the 

result. 

In contrast to publications about internal flow, only a limited number of 

publications about losses and discharge relations of free surface flow 

structures are of more general value. Because at free surface flow many 

more parameters (compared to internal flow) are involved, the chance is 

small that exactly similar conditions occur as compared to data from 

1 iterature. 

Because internal flow is discussed in Part T of the IAHR manual, in the 

following only data and computation methods are presented which are related 

to free surface flow. The application of scale models is not further 

discussed. 

The data of this manual will mainly be used for estimating in the pre-

design stage the dimensions of a structure through which a certain 

discharge should pass at a given combination of up- and downstream water 

levels (or difference of water levels). 

Another use of these data can be the introduction of structures such as 

sluices, weirs, and so on in far-field computational models of canal 

networks and estuaries. Then it is important to have insight into the 

nature of the discharge relations with all sorts of combinations of the 

upstream and downstream water levels. 

The following type of equation is called a "discharge relation" 

Q = f(h, h
2) 
 geometry) 
	

(la) 

in which Q = discharge, h 0  = upstream water level, and h 2  = downstream 

water level (in general at a distance where the flow is redistributed over 

the flow section). 

Instead of water levels, also the energy heads can be applied. 

Q = f(H0 , H 2 , geometry) 
	

(ib) 

When in a structure one section controls either in total or mainly the 

discharge relation, then this is called a control section 
t, 
. In Chapter 3 

the discharge relations of control sections are presented. 
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When the structure has a certain length (in flow direction) the "hydraulic 

losses from different components" are also involved, such as entrance- and 

exit-losses, friction losses, losses at a hydraulic jump etc. 

A number of these losses are expressed in terms of losses of energy head. 

As and example the entrance loss: 

AH 	E V2/2g 	 (2a) 
e 	e c 

where: 

AH 	= loss of energy head at the entrance, 

= entrance loss coefficient, 

V 	= culvert velocity and 

g 	acceleration of gravity. 

At a free-surface condition this equation becomes: 

AH = e 
(Q/wd)2/2g 	 (2b) 

(w = culvert width, d = water depth in the culvert). 

This relation differs markedly from Equation 1, and in equation 2b the 

depth d is coupled to both the up- and the downstream head. The following 

procedure is suitable to determine the discharge relation of the structure. 

The discharge relation of a control section, mostly expressed in the form 

of Equation (1), is transformed into: 

h = f(Q, h 1 ) 

(h 1  is the head just downstream of the control section and h is the water 

level just upstream of this section). 

Now to h is added the effect of the different losses from elements 

upstream and from h 1  is substracted the effect of the downstream losses 

which results in h 2 . (All these additional losses are found from 

expressions similar to equation 2b but then transformed into steps in water 

level). 

When these calculations are performed for a sufficient number of 

combinations of Q, h 0  and h 1  then a new discharge relation of the type of 

Equation 1 can be established. 
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In this manual data are presented about discharge relations of control 

sections and about losses of components. Discharge relations of complete 

hydraulic structure are not presented here as these can only be considered 

as a special case. In certain cases the discharge relations of the control 

section might be representative for the whole structure. This applies when 

the flow at the control section is strongly throttled (discharge over 

weirs, over and under gates etc.). 

Concerning the discharge characteristics of a control section with free 

surface flow, there is already a great complexity: three flow regimes are 

distinguished. Later this wil be illustrated in Figures 3 and 4, in which 

configurations with openings and overtopping are introduced. 

free flow (or modular flow), where the discharge is related to the 

upstream head only; Q = f(h0 ). Because the upstream energy head H 0  

(being (h 0  + V/2g)) is related to h 0  and Q, also  Q = f(H0 ) is a unique 

relation. In the design it is of interest to know how low the 

downstream water level must be to guarantee modular flow. 

fully submerged flow, here "fully" means with small head differences. 

Fully submerged flow is comparable with internal flow because the 

nearly horizontal water level is a boundary which remains independent 

of the flow velocity (as long as this velocity is small), so the loss 

and the discharge relation are also AH = V 2 /2g, and Q = C d 
 A 12gAH, 

with the loss coefficient E and the discharge coefficient Cd  being 

independent of AH. AH is the loss of energy head from up- to downstream 

of the control section. When the flow is overtopping a sill or a gate, 

then the flow section "A" depends on the water level. 

C. intermediate flow, in between the two former regimes; this is the most 

complicated one; the discharge depends on both energy levels H0  and 

(or on both heads h 0  and h 1 ). It comprises the situation of what is 

called submerged weir flow, wherein AH determines the discharge but 

where the flow section is mainly determined by the downstream level 

instead of the upstream level (like Figure 4b). It comprises also the 

situation of semi-submerged gate outflow with an eddy on top of the jet 

(with thickness d.) with super-critical flow (Froude number > 1 or 

V > Id.). And as will shown in section 1.7 (Figure 5) there can also 

be mixed flow, where the upper part of the weir flow behaves like free 

flow and the lower part like submerged flow. 
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The transition between the free flow and fully submerged regimes and the 

intermediate regime cannot precisely be predicted. 

In Figure 1, a picture is shown of the generalized discharge/water-level 

relation, where the three flow regimes are presented. Such a presentation 

is valid for the control section, but can also be drawn up for the complete 

structure. 

log Q 

te 
ter 

t modular flow 

Q = f(H) 

H0 =3 

H0 =2 

H0 =1 

Q. 
	 \\ \overflow 

underfiow 

10 	1ogH 

Figure 1 Generalized discharge/water-level relation for one geometry (and 

also one gate position). 

In case the complete structure is considered, the characteristic property 

of the fully submerged flow regime remains that discharge Q increases in 

proportion to the square root of the head difference. At overflow the 

control opening and the discharge vary also with the waterlevel h 0 . 

The characteristic property of the free (or modular) flow is again that (at 

a given upstream water level h 0 
 ) the discharge Q is completely independent 

of the head difference. The relation with the upstream water level can be 

in proportion with H312  (overfiow) but also with H (underflow or a 

horizontal slit halfway) or a combination of both. 

At intermediate flow the characteristics of the total structure are more 

variable than the one of the control section. 

When the head djfference increases, a dip is seen in the water level just 

downstream of the control section. This is related to the recovery of 

potential energy further downstream. So the head difference over the 

control section is greater than the global head difference. 
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Therefore, if the flow opening remains constant, the discharge increases 

more than proportional with the square root of the head difference. This 

for instance is observed in Figure 42. 

At overfiow the flow section decreases with a lower downstream water level 

and this effect will generally be stronger than the effect of the increased 

head difference as was mentioned above. 

The intermediate flow regime can also show a mixed flow condition at a 

number of openings, where some of them have modular flow and some submerged 

flow. 

Figure 1 applies to one geometry only: at a structure with a gate such a 

set of curves should be set up for each gate position. Generally, this is 

not done but the result is that simplified presentations show scattered 

data! 

Resuits of computation of losses in free-surface flow at hydraulic 

structures are less precise than those for internal flow. The number of 

parameters requires schematizations and often a scale model is used for 

final calibration. 

Computations serve mainly for dimensioning the structure in the pre-design 

stage. When the structure is meant for discharge metering it has to be 

specially designed for that purpose (standard design weir), or the 

structure must have a reference section with a good flow distribution, 

where the discharge is calibrated with measurements of velocities at 

different points. With an accoustic discharge meter the flow distribution 

can be uneven and, depending on the type of equipment, streamlines need not 

be parralel. 

In Section 2 js introduced a computer algorithrn which can be used to handle 

the type of equations for free surface flow in the intermediate flow 

regime. For free or fully-submerged flow, data can be used which are 

presented in part II and part 1 in this manual (measuring weirs and 

internal flow respectively). Left out are special situations with, for 

instance, mixed air/water flow, and the transition of roofed culvert parts 

with subroerged and with free flow. 



1.2 Discharge relations of hydraulic structures introduced in far-field 

computat ions 

In one-dimensional far-field computational models (networks), and in two-

dimensional tidal and flow models, the discharge relation of structures, 

dikes, and so on needs to be represented. 

Suppose that the type of curves of Figure 1 are determined either from 

scale-model measurements or from computations. In both cases there is some 

difficulty in incorporating the resuits in network or in tidal computation 

schemes. The nature of the curves is for each upper water level: 

1f Ah (or AH) > P, with P = f(h0 ) then modular flow: Q = f 1 (h0 ) (or f(H0 )) 

1f Ah < R, with R = f(h 0 ) then submerged flow: Q = f 2 (h0 ) 1 2gAh 

In dynamic networks or tidal computations one prefers to use discharge 

relations for a barrier or a closure gap, which can be differentiated 

continuously. Expressions with "if" statements (Boolean variables) are less 

suitable. The discharge relation can be replaced by an empirical expression 

approaching reality in a limited range of hydraulic conditions. 

The following type of expression might be suitable to represent the 

complete weir flow-discharge relations (which at their turn are obtained by 

empiry or by computation) in a versatile way: 

1 	1 	-11fl 
Q = [ 	+ 	 (3) 

{f2(h0) I2gAh)n 	[f1(h0)] 

is representative for the fully submerged flow condition (where Ah is 

small) and f 1  for the modular flow. 

In this expression f 1 , f 2  and n can stili be functions of h 0  or Ah. 

It can be seen that, for one h 0  value, the left term dominates when Ah is 

small and the right one dominates when Ah is great, so similar lines as in 

Figure 1 are obtained. 

The power n is introduced to describe the curvature between the modular 

flow and the submerged flow line in Figure 1. 

At gate underflow the intermediate flow does not show a simple sharp 

transition between the submerged and modular flow regimes, for which a not-

too-small n must be chosen,but the relation Q  1K1Ï which is valid for the 
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fully submerged regime, gets steeper in the intermediate flow regime. So a 

function as 

Q = a 	+ OAH + y AHb (with b > a > 0.5) 

should replace the former relation Q 	IKi. The power n in Equation 3 must 

be higher than a or b. 

In two-dimensional far-field flow calculations the skew overfiow over dikes 

causes a modification in the direction of momentum. This is discussed by 

Schönfeld [35].  When the dike is supposed to be smooth, the momentum in the 

direction of the width (say "perpendicular to the flow") does not change. 

The momentum in flow direction modifies according to what is found for two-

dimensional flow. Now the initial upstream velocity (to be used for 

obtaining the energy head) must only be the velocity component in 

longitudinal direction of the crest. 



1.3 The use of the Bernoulli-, the momentum- and the Carnot equations 

For free-surface flow the Bernoulli- and momentum equations can be applied 

in the same way as for internal flow. The Bernoulli equation applies only 

when the flow converges (accelerates). 

The momentum equation can be applied when the pressure distribution is 

known. The momentum equation is then suited to calculate the losses in the 

zone of decelerating flow. The application of the momentuin equation is of 

great value in all those cases where the flow profile is suddenly widening 

and where in zone of the separated jet and the eddy on top or underneath 

reigns a nearly hydrostatic pressure. 

As for the momentum equation: for internal flow (pipe flow) it is common to 

use the Carnot equation at abrupt expansions with cylindrical or 

rectangular culverts. This equation, which is derived from the momentum 

equation, is easier to handle than the momentum equation itself. With free-

surface flow, however, the Carnot equation only applies at low velocity 

conditions where the water level is almost straight and parallel to the 

bottom. Therefore, in general, with currents having free water surface the 

mornentum equation must be applied directly. 

Most computations of pressures and losses are based on one-dimensional 

considerations, where discharge is supposed to be evenly distributed over 

the flow section. 
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1.10 
and 

1.08 

1.06 

1.04 

19 
1.02 

1.00 

06 	.05 	.04 	.03 	.02 	.01 	0 

C  

Bernoulli in l-d computations 

h 
 1 .

a
1 2g - h2 + 0 2 

i r v'd A 
J 

A 

omentuzn eq 

t Force 	pQ( 2  V 	- l v) 

1 f vd A B 	
AJ 	- 
A 

definitions 

VA 	=average velocity over 

section A 

C f  (½p V) = shear Stress 

Figure 2 Correction coefficient a and 0 for a fully developed velocity 

distribution as function of wail-friction factor; from 

Naudascher [24] 

But when the velocity profile is non-uniform the Bernoulli equation cannot 

be applied automatically. The transport of energy, proportional to p V 3 , 

must be expressed correctly in the energy balance. 

A (sometimes necessary) refinement can be obtained when in the Bernoulli 

equation a factor a is introduced into the 	/2g term. The 	now refers to 

the average velocity over the Section A. The a factor is always greater 

than 1. A similar procedure is used in the momentum equation (a factor 

applies). 

In Figure 2 a and 0 factors and their definitions are presented (from 

Naudascher [24],  but referring to the work of Rouse) for those conditions 

where the velocity distribution is fully developed and adapted to the wall 

friction c f . 

In a streamlined flow contraction of short length one should apply 

a = 0 = 1 because the boundary layers have not yet developed and the flow 

is still evenly distributed. 
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1.4 Some general remarks before starting the calculation of losses 

In general an outlet work or a sluice must be approached as if they 

were a chain of hydraulic losses. A dominant element is the discharge 

relation of the control section. This control section is a sill for 

instance, or an opening or a narrow flow section. First the discharge 

relation of the control section must be found. 

When first the modular flow is considered, then only the extra losses 

at the upstream canal section play a role, resulting in an additional 

rise of the upstream level. 

There is a maximum downstream level (close to the control section) 

where the modular flow is not affected. Naturally the corresponding 

water level farther away depends on losses, change in flow section, and 

50 on. It is important to consider separately the water level just 

downstream of the structure and the water level farther away where the 

flow is distributed over the whole flow section. 

Discharge-regulating structures are relatively short. The losses due to 

the inlet, slots, shafts, and so on and, in fact, are therefore not 

independent of each other. In computated these interactions are 

neglected, and hence only a limited accuracy of computed resuits is 

obtairied. The importance of interactiori effects at non-modular flow 

increases when modular flow is nearly reached: diving jets and other 

phenomena cause deviations from the one-dimensional flow. 

For submerged flow or for the intermediate flow regime, first the 

discharge/water-level relation should also be established for the 

control section. Then the additional losses up- and downstream must be 

added. The momentum equation can be applied just downstream of this 

section, but only for abrupt expansiQns where sufficient information 

about the pressure distribution is available. For other configurations 

(scarcely available) empirical data have to be used. 
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Complicating factors in the analysis can be points F and G: 

F. There can exist conditions at which it is not 

flow the control section is located. A flow c 

recess can suddenly create a control section, 

several critical sections occur are possible. 

such a flow contraction that at that location 

formed resulting in extremely high (and often 

dear where with modular 

ntraction at a gate 

and even situations where 

The trash-rack can create 

a control section will be 

unexpected) losses. 

G. Near the modular flow condition hysteresis effects can occur; another 

discharge is found depending on whether a certain downstream water 

level is reached by raising or by lowering. With an overflow coridition 

starting at a low downstream level the free-falling jet dives and 

causes a local dip in the downstream water level, which in turn results 

in sustaining the modular flow condition with a diving jet. However, 

starting at a high downstream water level the submerged jet does not 

tend to dive and hence no local dip in the downstream water level 

occurs. 

The size of hydraulic.structures is large, so that the influence of the 

water viscosity (Reynolds number) is negligible. This does not apply for 

the scale-model results. 
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1.5 Modular flow eguations 

Figure 3 shows examples of modular flow conditions and their discharge 

equations. Approximate atmospheric pressure will reign in the whole flow 

section of the vena contracta when sufficient side- and/or under-aeration 

occurs. Reality is somewhat different but in the applied equations an 

empirical coefficient will incorporate these deviations. Near-hydrostatic 

pressure occurs in the vena contracta with two-dimensional flow above a 

horizontal bottom or a long-crested sill. 

In the case of the vertical partial slit the conditions of atmospheric 

pressure and the (assumed) horizontal outfiow in the vena contracta lead to 

the following expression for the discharge relation (see Figure 3 case a) 

Q = C w (2/3)(Ij) [H 3 / 2  - ( H - a) 3 / 2 } 
c 	0 	 0 

and when the slit is elongated till the upstream water level (case b) this 

equation transforms into 

Q = C w (2/3)(Ij) H 3 / 2  
c 	0 

(5) 

Here the contraction coefficient is introduced as C cy 
 the slit width as w 

the slit height as a, while H presents the upstream energy head in 

relation to the bottom of the slit. 

In reality the contraction coefficient has to be replaced by a discharge 

coefficient Cd  now also including the disturbing effects of vertical 

velocity components of vertical contraction. 

For the overflow nappe (Figure 3 case c) which is fully aerated, a similar 

expression applies but although at the top and bottom atmospheric 

conditions exist, the pressure inside of Section A-A will deviate, the 

velocities will vary in direction and the effective flow section is 

evidently less than the overflow height. 

In this case the discharge coefficient Cd,  still related to Equation 5, is 

an empirical one and no relation is derived from an estimated contraction 

coefficient. 

(4) 
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At the broad-crested wejr or sill (symbols, see Figure 4b) streamlines are 

straight and thus there is hydrostatic pressure. Application of the 

Bernoulli equation for the broad-crested sill results in: 

q = h 1 '12g (H0- h 1 ) 
	

(6a) 

q gets maximal when h 1  = 2/3 H0 , and for modular flow one gets the equation 

presented in Figure 3d: 

q 0  = (2/3) H 0  'I(2gH0 /3) 	 (6b) 

(H0  is again the upstream 

discharge of modular flow 

the sill (being (2/3) H 0 ) 

equation (see also Figure 

when the downstream level 

energy-head level above the sill level and q 0  the 

per unit width). The critical waterdepth d above 

is the one where application of the Bernoulli 

4b) leads to the maximum discharge, which remains 

is further lowered. 

For flow under a gate with a contraction coefficient C see Figure 3e) the 

Bernoulli equation, also based on a hydrostatic pressure distribution, 

results in a velocity proportional to 12g (H upstr_ hdtr) giving: 

q = C c 	0 aI2g(H -C c 
 a) 	 (7) 

(here a is the height of the opening under the gate) 
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A variant for the discharge relation under the gate can be derived directly 

from Eq. 7 when instead of the upstream energy level H the upstream water 

level h0  is introduced as reference for the upstream condition. 

q = C a 12gh 0  /11 + Ca/h 
c 	

0) (8) 

Remark; 

This can be proved as foliows: 

Equation 7 can be written as q 2  = C 2 a 2  2g (h + (q 2 /h 2  2g) - Ca) 

or: q 2  (1 - C2a2/h) = C 2 a 2  2g h0  (1 - Ca/h) and after division of 

both terms by (1 - Ca/h) and taking the square root Equation 8 is 

obta ined. 

It is important to establish the maximum water level downstream of the 

control section for which no reduction of flow occurs. This downstream 

water level is different for the case that at modular flow the control 

section has a hydrostatic pressure distribution or that there is 

atmospheric pressure over the whole section: 

- at atmospheric pressure any pressure higher than atmospheric pressure 

reduces the discharge, therefore any water level above the crest or the 

bottom has an effect. 

- at hydrostatic pressure a downstream water level lower than the one at 

the control section, has no effect on the discharge, so in the case of 

Eq. 6 a downstream water level just downstream of the control section 

lower than 2/3 H 0 , gives no discharge reduction. 
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1.6 Fully submerged flow 

i 	i i 	 i The fully submerged II  flow regime as t s ndicated n Figure 1 is related 

to the limit case of a (nearly) horizontal water level and very low 

velocities (low Froude number). Because the flow boundaries are now fully 

defined, the data of internal flow losses can be used when these are 

available for similar geometries. The plane water level can be seen as a 

flow boundary or as a line of symmetry of a mirrored situation, so still 

more comparable situations might be found. 

The losses at internal flow are expressed in terms of 

AH = 	V2/2g 	 (9) 

and this also applies for the fully submerged flow. The influence of AH on 

the losses E is negligible now. The total loss E is built up by a series of 

local losses (inlet, gate, outlet, friction). The final result can now be 

transformed as follows: 

AH 	= AH i 
	

+ AH 	+ AH 	+ AH 	etc. 	(9a) 
tot 	nlet 	gate 	friction 	outlet 

AH 
v2 

= 
tot 	2g 	inlet + gate + 	+ 	

etc.) 	(9b) 
friction 	outlet 

v = _ 05 

I2gAH 	 (9c) 

Q = Cd A I2gAH 	 (9d) 

At overflow the flow section A varies with the water level. Due to a 

variation in flow geometry E and Cd  do not remain fully constant either. 

The friction losses are calculated in a similar way as found for internal 

flow. The Moody diagram, as is commonly used for internal flow in circular 

pipes, can be used but the "hydraulic diameter" Dh  in this diagram has to 

be replaced by the hydraulic radius Rh  which is defined as the sectional 

area divided by the wetted perimeter. 

For a pipe with circular section this gives: 

Rh = D/4 	 (10) 
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A problem with the calculation of the friction is that the structure is not 

always long enough for getting the fully developed flow distribution, hence 

friction can be smaller or larger. 

At weir flow, starting with fully submerged flow and gradually loweririg of 

the downstream water level, the intermediate flow condition starts already 

at relatively small head differences. This is observed especially at weir 

flow (Figure 4b) where the flow section, being the water depth h 1  over the 

crest, varies with the downstream head h 2 . As has been indicated before, 

this condition is mentioned "submerged flow" (in contrast to modular flow 

and also in contrast to fully submerged flow where the water level is 

approximately horizontal). 

An example of the loss coefficient of a sill in the fully submerged 

condition is shown in Figure 4a. The water level being nearly horizontal 

and the downstream face being vertical, the pressure distribution is a 

hydrostatic one and thus the momentum equation can be applied. But because 

of the water level being nearly horizontal also the Carnot equation can be 

applied and this lead to an analytical expresson for the discharge q as 

function of h0  and AH. This can also be done for few under a gate, 

Figure 4c. 

The calculation for the losses is for the submerged condition, although 

here the flow section varies with the downstream water level, quite 

similarly as for the fully submerged condition. 
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F'ULLY-SUBMERGED FLOW REGIME (small H) 
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Figure 4 Long-crested weir and gate flow under fully submerged condition 

and in the intermediate flow regime 
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1.7 The intermediate-flow relations at control sections 

In the intermediate-flow conditions direct application of the Bernoulli 

equation (from h 0  to h 1 ) and the momentum equation (from h 1  to h 
2 
 ) leads to 

a feasible result for the flow over a long sill (Figure 4b) and for flow 

under a gate (Figure 4d). But a discharge relation like Equation 1 cannot 

be found directly. Starting with h0 , q and h 1 , the h 2  can be found through 

an iterative search or by solving a third-order equation. With the 

intermediate flow regime there are certain cases where mixed-flow can be 

assumed. A part of the discharge is related to free flow and a part to 

submerged flow. These cases are illustrated in Figure 5. When using these 

mixed flow equations with constant Cc coefficients resuits may not be very 

accurate but certainly useful for a first estimate of the discharge. The 

procedure is fairly evident for the case of a half submerged narrow 

vertical slit, where the horizontal flow contraction will not vary strongly 

and where one can clearly distinguish a free-flow part and a submerged 

part. At a nappe or at flow through a horizontal slit the pressure in the 

control section is also nearly atmospheric but the (vertical) flow 

contraction is more variable. 

A usual way of expressing the weir flow discharge in the intermediate flow 

regime is to start with the modular flow discharge Q 0  and then apply a 

reduction factor C 5  which is a function of the dimensionless submergence 

factor S. 

S = h 2 /h0  or h 2 /H0 	 (11) 

QCsQo 	 (12) 

where Q0  is the discharge at modular flow. 

Q0 = f(H 0 ) 	 (13) 

By introducing a number of simplifications the reduction factor C due to 

submergence can be expressed analytically for both a short-crested and a 

long-crested weir. 
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A: Short-crested weir (Figure 5c): 

q 0  is found from the equation shown in the figure when b = 0 is introduced: 

q0 = Cd(2/3) (V'2g) H0 3/2 
	

(14) 

Then we introduce for the fully submerged condition b = h 2  (this is only 

true when the sili is relatively high) and we assume for the discharge 

coefficients Cd = Cd = Cd 
a 	b 

The height b in Figure 5c can be expressed as H0 S, and the discharge 

relation of Figure 5c becomes: 

q = 	+ O= Cd(2/3) (hj) (1-S) 3 ! 2  H03/2 + C d S H012g H0  (1-S) 

C = q/q 0  = (1-S) 3 ! 2  + ( 3/2) sfï 

Cs = (1 + ½S) 1(1-S) 
	

(15) 

This analytical expression was compared by Abou Seida and Quarashi [2] with 

experiments, see Figure 6. 

1.0 	 broad—crested weir, eq(19) 
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08

00  

0.6 

0. 4 	Z4-  
0.2 - 	experimental points Abou Seida;Quaraishi 

o.x 	eo-.3o 

e =45.60* 
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Figure 6 Discharge reduction by submergence 

on 
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B: Broad-crested weir 

Equation 6 was: 

q 0  = (2/3) H 0  (12g H0 /3 	 (16) 

When the weir height p is large compared to the overflow depth, then in the 

situation of Figure 4b the water level above the crest gets equal to the 

downstream water level. "Bernoulli" then resuits in: 

q = h 2  12g (H0  - h 2 ) 

and, introducing S = h2/H M  h 2 /H0  one obtains: 

q = S H0 /2g H0  (1-S) 	 (17) 

	

(17) hoids for S > 2/3, otherwise q = q 0 	 (18) 

This results in: 

= 1 for S < 2/3 and 

	

= (3/2) Sv'3 (1-S) for 2/3 < S < 1 	 (19) 

Figure 6 shows the verification of Equation 15 with experiments on the 

sharp-crested weir in vertical and in 30° inclined position, and with a 

triangular sloping filling block at the upstream face on 450 and 600  (from 

Abou-Seida and Quaraishi [2]). 

Again, the above relations for the control section must be extended to the 

water level further upstream and downstream for obtaining the discharge 

relation for the whole structure. The extra losses upstream will not cause 

problems but for calculation of the water level further downstream where 

the flow diverges, one could try to apply the momentum equation. However, 

when the downstream canal has diverging walls or when there is a sloping 

bottom, not all the forces which need be introduced are known; this in 

contrast to the sill with vertical back wall. What might be feasible, but 

this is not sufficiently verified, is that the rise in water level (by 

recovery of potential energy) with a certain slope (estimated to be some-

where in between 1:5 and 1:7) is used to introduce an extra horizontal 
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force in the momentum equation. Assuming a hydrostatic pressure distribu-

tion, the longitudinal force component acting at the diverging wails or 

sloping bottom can then be calculated; this force indeed gives a reduction 

in energy head losses at diverging walls. This procedure has originally 

been suggested by Kooman [ 2 1]. 

It can be seen that the calculations in the intermediate flow regime do not 

contain new elements, but computations should be done carefully. The steps 

or slopes in the water level do change the flow geometry so that the losses 

cannot be found so easily from literature data. The proposed computer 

program of Chapter 2 is suitable to handle the trial-and-error procedure 

which is related to the water-level computations in the intermediate flow 

regime. 
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1.8 Remarks about entrance losses 

At the entrance of a sluice or a culvert the pressure lowers due to the 

velocity head V2/2g  (wherin V is the culvert velocity). However, there is 

the "normal" flow convergence which depends only on the culvert section, 

and there is an extra contraction which depends on the mouth shape. The 

extra contraction will disappear further downstream but the result is an 

extra loss (similar to Carnot losses at a suddenly widened flow section). 

Per definition: 

H = H + E (V 2 /2g) 	 (20) 0 	c 	e 	c 

or 

h0  + V/2g = h + (1 + E ) V2/2 g 	 (21) c 	e 	c 

h0  and H0  are pressure head, respectively energy head upstream from the 

culvert, and h 
c 	c 	 c 
and H are related to the ones in the culvert V = culvert 

velocity. 

E e  is determined from pressure and discharge measurements. 

= {(h0  + V/2g - h)/(V 2 /2g)} - 1 
	

(22) 

In general it is assumed that the velocities are evenly distributed over 

the culvert section. 

However, it has been discussed in section 1.3 that in reality an a factor 

should be introduced to take into account the uneven velocity distribution 

(Figure 2). Because inlet losses of nicely shaped mouthes are small (in the 

order of 0.15 to 0.3 in prototype and still smaller in model, see section 

4.1) a few percent greater (V2/2g)  will also result in a in reality smaller 

E e  value (a few time 0.01 less). 

In the total analysis of a structure the neglect of a is generally not 

important, because at the outlet the extra kinetic energy which initially 

is neglected is lost anyhow. 

In par 4.1 the relation between the flow contraction coefficient C and the 

entrance loss E is discussed. 
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In a closed culvert or at lower water velocities the condition is 

comparable with a condition with a sudden flow expansion and hence "Carnot" 

can be applied to the entrance losses. 

Using the symbols of Figure 7, 

1 
AH = (V - V ) 2 /2g = (C_ - 1) 2  V 2 /2g 

m 	c c 

and hence 

_1 
e 	c 

	

= (C 	- 1) 2  (23) 

Vm  = V ICc 

entrance losses 

Figure 7 Entrance conditions. 

C varies from about 0.55 (at a an ali-sided sharp-edged entrance) tili 

about 0.85 for an elliptically shaped entrance, which should result in 

values from 0.03 to 0.67. The low values, however, are never reached in 

reality (see Figure 65). 
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1.9 Remarks about trash-rack and bridge-pier losses 

Data about trash-racks found in literature refer to one-dimensional flow 

without influence of the free water surface. But these data can also be 

applied at lower water velocities with a nearly horizontal water level at 

free surface flow. In other conditions these data give losses which are too 

small. Even modular flow can occur jn the flow contraction. 

This is the reason why bridge-pier data are also related to the Froude 

number v//j, where V is related to velocity and d to water depth of the 
undisturbed condition. 

There is a direct relation between the losses of trash-racks and the 

hydrodynamic forces exerted on the bars. This relation foliows from the 

application of the momentum equation. When the rack is fully submerged then 

the inflow momentum equals the outflow momentum and the momentum equation 

results in: 

p g AH = rack resistance force per unit area of the culvert 	(24) 

(AH = loss of energy head, p = fluid density) 

and when free surface flow is involved one can derive from the momentum 

equation per unit width: 

Vipgh 1 2 + pqV 1  = Force + ½pgh 2 + pqV 2 	 (25) 
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There are three types of approach to establish the trash-rack losses (see 

Figure 8): 

w/b = £w/W 
trashrack loss coefficient 

C = flow contr.oUon coefficieit 
C F= force coefficient 

A 	£ Wi 	£ 	4 

vo  

A i =(v/zg) 	(W—tw) —1 

)2 
 (Carnot) 

B 	force (per meter 2)= C(rw/W)4- pV 2 = pgiH 

wlth C F = f (bar—hape. and Ew/W) 

C: £H=,t v 2/ 2g with= t(bar— ihape.and EW/W) 

Figure 8 Flow conditions at trash-rack and different types of approach for 

calculation of losses 

Estimation of the flow contraction and establishment of the losses by 

applying the momentum equation. The assumption is that in the whole 

flow-contraction section an equal pressure exists. (For small blockage 

ratios this does not need to be true!) Without any influence of the 

free surface (in a culvert or at a horizontal free water surface) the 

Carnot equation can be applied. 

Estimating the drag coefficient of the bars and transferring the total 

force into a hydraulic loss. 

Using direct data of trashrack tests where losses are presented as 

function of shape and density of the bars. 

Mostly the third method is used, but it is advisable to apply also method A 

so as to regard the consequences of extra blockage by trash and for 

checking the possible effect of the modular or intermediate flow regimes. 



1.10 Reauired and obtainable accuracies 

In ISO 1438, included in the ISO handbook [18] are discussed the accuracies 

of discharge relations in prototype; the accuracy of hydraulic models are 

discussed by Kolkman [20]. One of the conciusions is that accuracy 

considerations must be set up separately for each specific case. 

The possibility of systematic errors and scatter in model results must be 

considered both. The definition of error can be related to the actual 

discharge or to the maximum discharge. 

Even when a scale-model investigation is considered, in the pre-design 

stage it is important that a good estimate can already be made about the 

discharge capacity of the structure. For this case it is important to know 

how much one can rely upon data from literature. 

The necessary accuracy is at the pre-design stage, say 5 to 15%; this 

percentage is related to other inaccuracies of the design input (water 

level, the once-in-a-hundred-years river discharge, etc.), and to 

construction costs when for instance too-large gated openings are designed. 

Especially in the United States a large number of investigations have been 

carried out to establish systematic design data of free (modular) flow 

construct ions. 

For these modular flow conditions it is certainly possible to obtain an 

accuracy in discharge between 3 and 8% of the actual discharge. For 

discharge sluices in tidal areas the intermediate flow regime occurs 

frequently and here the accuracy of estimated losses is less (up to 20% 

errors is the experience). 

There are structures with a diffusor-shaped outlet resulting in a high 

discharge capacity, but systematic data for the functioning of such 

diffusors at free surface flow are missing. 

When using the structure for water-discharge control the required accuracy 

will be within 3 to 10% of the actual discharge. 1f a greater accuracy is 

required than 10 to 15%, a specific scale-model study should be set up 

and/or a seperate discharge meter has to be instailed. 

In certain cases the structure can be calibrated with the use of propeller 

velocity meters, acoustic flow meters or with tracer methods. In these 

circumstances the obtainable accuracy is variable and depends largely on 

the measuring section, the accessibility, the number of measuring points, 

the flow distribution and flow direction, turbulence and so on. When there 
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is a straight canal or culvert in the structure an accuracy of 2% to 5% can 

be reached. Again, a discussion about accuracy of measurements is found in 

the ISO handbook [18]. 

When a high accuracy is required in discharge metering with the structure, 

the design must be modified to that purpose. A scale-model investigation 

must include an extended up- and downstream basin, the water levels must be 

measured at points corresponding to the location in prototype, the scale 

must be adequately chosen in relation to the wanted accuracy and a 

correction procedure should be used to compensate for scale effects due to 

friction. Structures with trash-racks need special research procedures. In 

general a structure with a trash-rack is not weli-suited for discharge 

metering. 

In the presentation of discharge coefficients following here, the influence 

of the Reynolds' number (viscosity effects) is not inciuded. For the 

prototype structures this is of minor importance, and hence in the pre-

design of the structure it does not play any role. For the choice of the 

scale factor in hydraulic modelling and for the interpretation of scale-

model results specialized knowledge is needed; this is beyond the scope of 

this manual. 
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2. NUMERICAL PROCEDURE FOR COMPUTATION OF WATER LEVEL/DISCHARGE RELATIONS 

2.1 Introduction 

ne Wo! pierW/[ 

entrance 	 • gate 	 exit 

1 	= 1 a it 	- 	 3 	 4 

A 	
III 	 B

Ll  

Figure 9 Water levels in a discharge sluice 

In Figure 9 a sluice with free-surface flow is schematized throughout as a 

chain of discontinuities for each of which an equation can be set up 

relating water levels and discharge. In this schematisation no interactions 

between the sections are introduced. 

A is the inlet of the sluice. Sluice width is introduced as w. The inlet 

loss coefficient is E .. The relation between h0 , h 1  and Q can be written 

as: 

h0  + a0 (Q/w0h0 ) 2  /2g = h 1  + a 1  (1 + E l ) ( Q/w h 1 ) 2  /2g 	(26) 

(w0  is the width upstream of the sluice, w is the sluice width and 	is 

the entrance loss coefficient). 

When the flow is supposed to be evenly distributed over the flow sections 

the gate-discharge relation becomes: 

h 1  + (Q/h 1w) 2 /2g = h 2  + (Q/Caw) 2 /2g 	 (27) 

Here C is the flow contraction coefficient in opening a. 
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When the computation starts from upstream, there is a certain Q whjch 

cannot pass at the upstream water level which was introduced; one can now 

for instance by trial and error find the modular flow discharge (h 2  cannot 

be smaller then the contracted jet Ca). 

The gate loss is produced in the deceleration zone of the flow further 

downstream of the gate. This loss can be computed using the momentum 

equation, provided that Al (in Figure 9) is sufficiently large: 

pgw (0.5h 2 2 ) + pQ 2 /(Caw) = pgw(O.5h3 2 ) + pQ 2 /(h3w) 	(28) 

The exit loss at B (a sudden widening) can also be determined with the 

momentum equation, assuming that the water level in the basin near the 

sluice is related to the water level h 3 , as follows: 

pgw (0.5h3 2 ) + pQ 2 /(h3w) = pgw (0.5h4 2 ) + pQ 2 /(h4w) 	(29) 

At a gradual widening an empirical relation between h3, h4 and Q has to be 

int roduced. 

When a hydraulic jump downstream of the gate is involved one obtains: 

pgw [0.5(Ca) 2 1 + pQ 2 /wC a = pgw (0.5h3 2 ) + pQ 2 /(wh3 ) 	(30) 

When refined calculations are needed, one can still introduce the a and 

factors of Figure 1.3, the friction of the culvert walls, a varying C 

value of the gate opening, depending on gate position, and on the water 

level h 1 . All these equations are coupled. It is common to solve each 

equation separately, and the "next" water level (more up- or more 

downstream) is found, mostly by trial and error, from the calculated energy 

level. 

IJsing a computer one can now solve these equations in a standardized way. 

For each of the formulas we index the water level of the left-hand section 

as h 1  and at the right hand as h 2 . In the case of a hydraulic jump 

computation downstream of a gate, we define Ca as being h 1  for instance. 

Each of the formula which were discussed before can be wrjtten as follows: 

f(h 1 , h 2 , Q) = 0 	 (31) 
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Starting the calculations from upstream with a given h 0  an Q, the given 

water level h0  serves as the h 1  of Eq. 31. When also the Q is introduced 

then Equation 31 can be written as 

f(h 2 ) = 0 
	

(32) 

For the search for this h 2  standard procedures are available. In section 

2.2 a procedure will be presented, written for the ACORN-BBC or the 

Archimedes computer. 

When Eq. 32 is solved for h 2 , this is the h 1  to be introduced in the second 

formula, and then the next h2  can be found. 

The iterative procedure for the determination of the modular flow 

conditions is relatively easy as well; when the discharge is too high in 

combination with the chosen upper-water level, then no value of h 2  is 

found. Hence the modular discharge is the maximum discharge which stili can 

pass. 

But a direct way of computation is to set up the equation for modular flow 

at the control section and do the same type of calculation in the upstream 

direction. Downstream of the control section one proceeds in the normal 

way. 

In the search procedure for h 2  one has to define the h 2  range where the 

search takes place. One limit of this range can be h 2min near zero (not 

exactly zero because then certain terms of the equations tend to infinity). 

The 2max 
 can just be an arbitrarily large value of h 2 . Not an extremely 

large value, because then the search steps generally get large as well, and 

two solutions (critical flow and supercritical flow) can be surpassed in 

one step. 

When one wants to find the subcritical flow, then the search for h2 has to 

start at h 
2max 

 and one goes downward; for the supercritical flow it is the 

other way around, that is working upward from h2. 
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2.2 The search procedure 

Equation (32) is transformed into 

f(h2 ) = Z 	 (33) 

in which Z has to become about zero, with a wanted accuracy of c. 

A simple but fool-proof procedure would be stepping through the h 2  range 

with steps Ah, thus obtaining Z 1 , Z 2  and so on. 

Whe n 

(z 	)z ~O 
n-1 	n 
	 (34) 

the search is stopped, and the procedure starts again with h 1  and h as 

new limits of the search range. The Ah steps must be small enough for the 

first search, because near the critical waterdepth the two solutions (sub-

and supercritial are near to each other). The simplest procedure is to stop 

the iteration when: 

f((h1 + h)/2) < c 	 (35) 

The wanted h2  value is then 

h 
2 

= 
(h n-1 

+ h 
n 
 )/2 	 (36) 

In the appendix to this chapter a much faster procedure is used, based upon 

the Newton-Raphson method . At an arbitrary begin-value of h 2  the 

derivative is computed 

dZ/dh 2  = 
	

(37) 

(Ah 2  has been chosen as 1/2000 for the h 2  search interval) 

When from this begin-value of h 2 , with its corresponding Z value the 

tangent line is considered, the Z = 0 corresponds with a new h 2  value. 

* At a suggestion from H.K.T. Kuijper, Delft tJniversity of Technology. 
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It is checked whether 

Z = f(h 2 )l < wanted accuracy 

When IZI is stili too large, h 
2-new 	 2 

replaces the value of h and the 

procedure is repeated. 

This procedure is incorporated in a new-defined function, FNfast-implîcit' 

with the following variables: 

M = the nuinber out of a series of self-defined functions of the type 

f(h 1 , h 2 , Q) = 0 (like Eq. 31). 

h 1  (defined as in Eq. 31). 

Begin-h 2  
these values determine the search range of h 2  

End-h 2  

Q (discharge, see Eq. 31) 

This procedure is fully adequate to solve h 2  from the Bernoulli or the 

momentum equation, but when using other types of equations, this procedure 

can evoke problems. 
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APPEFILIX of CUAPTER 2 page 1 

41 th the ACORN NRC computer the foliowing function 	"FNf act impi icit" 
bas been developed uhich produces the waterlevel h2 uhen one introduces 
the discharge 0, the waterlevel hi and the self defined relation 
F(hl, 1i2, 0)= 0. The h2 value is found when the function is called for in 
the following weyr 

h2= FNfastimplicit(fl, hi, beginh2, endh2, 0) 

The numher M is the numher of a series of .self-defined functions which is 
referred to. The begin h2 and end_h2 values define the renge in which h2 
bas to he found. With e loo value of heginh2 the supercritical solution 
is found and with m high value the subcritical one. 

As an example the sequent depth of a hydraulic jump is produced. 
The momentum equation is as follows: 

.5rho'g(h1'2) 	rho'(q2)/hl= .5'rhog'(h22)4 rho'(q2)/h2 
This equation is transforrned, putting all terms in the left hand: 

.5'rho'g'(hl2)4 rho'(q2)/h1- .5rho'g'(h22)- rhn'(q2)/h2= 1 
and Z hem to he zero! 

The input in the form of a program is as folloos: 

REMEIIBER program starts here. 
PRINT' "OIJTPRINT" 
h11: 	q=15: 	g=9.81: 	rho=1000 
begin h2=40: RFJI this seans that the subcritical solution is found. 
end h2= .01: REN the small begin_h2 or end h2 should be greater than zero 
11=1: 	REM this means that the first self-defined function is used. 
h2= FNfest impiicit(i1, hi 	heginh2, endh2, q) 
Pil 1 NT"hr'gi nh2= " begin Ii?; " 	end_1)2= " endh2 ; " 	h2= " h2 
END 

RF.MARM in the following function the momentum equation is represented. 
LEFFIJse ii (lef i ned 1 (bi h2 , q 
Z= .5'rho'g(h1'2) 	rh0'(q2)/h1- .5rho'g(h22)- rho'(92)/h2 

OUTPR INT 
begin h2= 40 	end h2= IF.-2 	h2= 6.29128557 

Other begin and end values of h2 result in: 

OUTPR INT 
begin h2= 1E-2 	end h2= 40 	h2= 0.999999999 

OUTPR INT 
begin h2= 10 	end h2= 40 	h2= -99.99 

Appendix of Chapter 2: Iterative search procedure for h 2  using the /\CORN-BBC 

computer. 

Appendix of Chapter 2: Iterative search procedure for h 2  using the ACORN-BBC 

computer. 
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APPENDIX of CIIAPTER 2 page 2 

REHARK the following contains the essential additional functions 

REM h2 has to be found 
LOCAL endh2, heginh2, wanted_precision, precision, steph2, Pi, heginZ, endZ 
LOCAL tangent alpha, former_tangent_sipha 
endh2= end_h2: beginh2= begin_h2 
wanted_precision=ARS((end_h2-begin_h2)/5OOO) 
Pl=0: outof_range=FALSE: stop'FALSE 
REPEAT 

5 teph2= (endh2-beginh2)/2000 
endh2= beginh24steph2 	 - 
h2=heginh2: heginZrFNadditional(Mi,h1 ,h2,O) 
h2= endh2s endZ=FNadditional(M7.,hl,h2,O) 
1F P =2 UIEN former_tangent_alpha= tangent_alpha 
tangent alpha=(endZ-heginZ)/(endh2- heginh2) 
1F tangent alpha <>0 THEN trial h2= beginh2- (beginZ/tangent_alpha) 
IV P%=2 AND tangent alphaformer_tangent_alpha>=O THEN out_of_range=TRUE 
1F (trialh2-beginh2)/(end_h2-hegin_h2)>0 	THEN out_of_range=TRIJE 
TV (tria1_h2begin_h2)/(end_h2-begin_h2)1 	 THEN out_of_range=TRUE 
endh2=beginh2: heginh2= trial_h2 
h2= trialh2: Z= FNadditional(M,h1,h2,O) precision=ABS(Z) 
TV precision >= wanted precision OR out of range TFJEN stop= TRUE 

UNTIL stop 
1F out_of_range TIIEN resu1t=99.99 ELSE result =trïal_h2 
= resu1t 	• 	t ttttt*tttt It*ttttttt* t Ititti tt*ttt*ttt,ittttttt tttt 

DEF FNadditional(H7,h1,h2,Q) 	LOCAL Z 
TV 11ir1 TIIEN Z= FUselfdefined1(h1,h2,(j) 
IV Mi=2 TIIEN Z= FNselfdefined2(hl,h2,0) 
TV F17.=3 UIEN Z= FNselfdefined3(hl,h2,O) 
Z: RE1IARK indicates that Z is the output of the seifdefined function. 

Appendix of Chapter 2; (continued). 
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3. DISCHARGE RELATIONS FOR CONTROL SECTIONS 

Remark: 

As noted before h is used for the water level and H for the energy head. 

When only the upstream water level is involved then h and H refer to the 

upstream conditions. Otherwise index 0 refers to the conditions upstream of 

the control section, 1 to the conditions in or just downstream, 2 to the 

condition further downstream. In U.S. reference like [38],  [40] and [ 43], 

H (the real or the effective energy head) is used in contrast to the 

design head Hd  which is a reference size whereupon the shape of a nappe-

shaped crest is based. 

3.1 The sharp-crested weir 

Discharge relations for modular flow and the submerged flow are discussed 

separately. 

A. Modular flow 

Still in use and best-known is the weir-formula developed, and extensively 

tested between 1925 and 1930 by Rehbock [30], at the of the Karlsruhe 

University. The sharp-crested full-width weir has since then also been 

widely applied as a measuring weir in laboratories. In Figure 10 a section 

of the weir is presented. When installed precisely, obtainable accuracies 

are within 1% [18].  The weir is sensitive to roughness of the upstrearn face 

and at an imprecise installation 5 to 7 inaccuracies can occur (according 

to Bos [7]).  Therefore its application as a discharge measurement structure 

in the field is less suitable. 

The formula is based on a two-dimensional flow pattern and presents as: 

Q = w (1.78 + 0.24 * h/p) (h + 1.1 10)3/2 	 (39) 

The equation is not dimensionless, and the dimensions of the parameters 

are: discharge Q is in me/s, the width w, the weir height p, and h are all 

in metres; h is the upstream water level above the crest. 

The flume width upstream of the weir equals the weir width w. 

The correction of 1.1 mm in h caused some problems when it was tried to 

transform Equation 39 into a dimensionless form. It certainly contains a 

mixture of viscosity and surface-tension effects. 
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For a measuring weir the crest shape has, according to ISO [18], to be 

designed as indicated in Figure 10. 

Special care is required for the upstream face to be vertical and smooth, 

and to get a complete aeration under the nappe. 

Sarginson [34] proposed to replace the value 1.1 mm by a factor 

representing the influence of the surface tension (o) by the Weber number. 

He defined this number We as: 

We = pgh 2 /0 
	

(40) 

After analyzing theoretically the possible effect of surface tension, he 

proposes the following discharge formula: 

Q = w(l.81 +.22 h/p +4.22/We) h 1 • 5 
	

(41) 

Also this expression is not dimensionless. 

The expression by Sarginson deviates up to 1.5 % from the Rehbock values. 

Accepted by the ISO committee on water-flow measurements [18],  are nowadays 

the experimental results of Kinsvater and Carter [19].  They investigated 

the discharge over a sharp-crested weir at different ratios between crest 

width (w) and flume width (W). They proposed the following discharge 

formula: 

Q = C  e (2/3) (I 	e e ) w h 	3/2 	 (43) 

This formula resulted from investigations for a wide range of W/w and h/p 

ratjos. Ce  is presented in Figure 11. we  is defined as the effective breath 

which equals (w + Kb); he is defined as the effective water-level height 

being (h + Kh). The h correction Kh  remains 1 mm for all situations, the Kb 

can be read in Figure 12. Again, the authors attribute the small Kh  and  Kb 

corrections to the viscosity and surface tension effects. The 1 mm 

correction means that the total weir formula is not completely correct in 

dimensions (according to the theory of dimensjonal analysis). 

The differences between the resuits of Kinsvater et al. and Rehbock, are 

illustrated with the following results for w/W = 1. The conciusion is that, 

applied in practice, they both produce the same result. 
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h p b QRehb. QKinsv 
% difference 

(m) (m) (m) (ma/s) (ma/s) 

.05 .4 .5 .01045 .0104 + 	0.5 

.1 .4 .5 .0296 .0296 0 

.2 .4 .5 .0857 .0855 + 	0.2 

.2 .6 .8 .1342 .1339 + 	0.2 

A correction factor for the discharge, in case of insufficient aeration, is 

mentioned by Bos [7].  It relates to air pressure underneath of the nappe. 

AQ/Q = -0,2 (p 2 /pgh). 0
. 92 

	

(43) 

The author compared this theoretically with the resuits of Sarginson in 

relation to surface tension effect (which also leads to a pressure in the 

water which deviates from the atmospheric one); however, the latter leads 

to a 5 times greater correction than Eq. 43. It seems reasonable to apply 

Eq. 43, which is based on experiments. 

B. Submer2ed flow 

The ratio of submergence is defined as: 

S = 
	 (44) 

Now h0  is the definition for the height of the upstream water level above 

the crest, h 2  is the downstream water level, also above the crest. 

Several authors have presented a reduction coefficient for the discharge, 

where S is the only relevant parameter and where h 0 /p is left out. 

The discharge is always compared to Q 0 , the modular discharge. 

Villemonte [41] presents: 

Q/Q0 = (1 - S 1 . 5 ). 305 	 (45) 

Varshney and Mohanty [39] propose (for .03 < S < 1.0): 

Q/Q0 = f103 - 0.27S - S 2 ) - . 059 	 (46) 



3) As it is presented in Chapter 1, Figure 6 and equation 15, Abou-Seida 

and Quarashi [2] propose an analytical approach, resulting in 

Q/Q = (1 + ½s) 1(1-S) 	 (47) 

It is remarkable that Eq. 46 does not reach Q = Q 0  when submergence is 

zero, but this in on purpose: Varshney and Mohanty present experiments 

where a kind of jump in the curve is observed between S = 0 and S = .03. 

Theoretically it might be imaginable that at zero submergence the discharge 

increases, because the last bit of air underneath is sucked out by the jet 

and a little underpressure occurs. 

All three equations are presented in Figure 13. Because at the modular flow 

regime atmospheric pressure occurs under the nappe, any extra water 

pressure will reduce the discharge, so a downstream water level higher than 

the crest has a direct effect. 

In the discussions presented by Villemonte [41] it is interesting to see 

that he also points to to Eq. 47, while referring to the Frenchmen Dubuat 

(Principles d'Hydraulique, Vol. 1 p.203, 1816). Villemonte shows that his 

own experimental results are better (within + and - 5% of his formula). At 

his smallest investigated h/p value (p being the weir height) of 0.06, his 

experiments yield a higher discharge, especially SO when the submergence is 

under 0.4. His higher h/p range (up to 0.25) results in a lower discharge 

compared to Equation 45, especially when S > 0.4. 

For the moment one must conclude that the bundle of curves in Figure 13 

shows the possible scatter in discharge relations of submerged conditions. 

crest width 1 - 2 mm 

Figure 10 Section of the Rehbock standard weir. 
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3.2 The weir with circular crest section 

In contrast to the sharp-crested weir, the semi-circular weir does not have 

a fixed point of flow separation. From a certain overfall height onward 

(H/R = 1.5 to 1.8) the pressure under the nappe becomes lower than 

atmospheric, and from this point on when H/R is increased, aeration can 

occur. When aerated the flow separation point shifts backwards, and comes 

below the crest level. Just upstream of the separation point the pressure 

is still lower than atmospheric (flow separation is retarded, particularly 

at the smaller diameters), and related to this retardation and to the low 

pressures at the crest, the nappe becomes more curved and the velocity 

becomes higher. For these reasons the discharge coefficient is greater than 

for the sharp-crested weir. In the region 1.5 <H/R< 2 it is still difficult 

to obtain a good aeration in a natural way. 

Thus, as a measuring device the semi-circular weir is only used from H/R> 

1.5 ori. 

Rouvé/Indlekofer [32] performed tests on a weir with semi-circular crest 

(Figure 14) where, with some of the tests the air is sucked out, so as to 

obtain comparative tests with and without atmospheric pressure underneath. 

They also refer to a number of published data. 

Figure 15 and 16 show the discharge coefficient Cd  in the following 

discharge relation 

Q = Cw(2/3) I 	H/ 2 
	

(48) 

The energy level H is introduced as the relevant parameter. Although a wide 

range of the radius (1-15cm) and the weir height (20-95cm) is investigated, 

the authors state that only the parameter H/R appeared to be relevant. The 

weir height had only an effect within 2%. The test values in Figure 15 are 

the average ones, obtained with a radius between 10 and 140 min. 

For small H/R values, where the nappe remains attached, the discharge 

coefficient is presented in Figure 16 in more detail. At a small radius Cd 

decreases and this must attributed to viscosity effects. 

Similar results are found by Sarginson [34] for the full-circle cylindrical 

crest. (In his definition of the discharge coefficient Sarginson uses the 

upper water level h and not the energy level F1). From Figure 17 it can be 

observed that for diameters smaller than 86mm the discharge coefficient 
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decreases with the crest radius. This must be a viscosity effect related to 

the boundary layer which probably means that also the roughness of the 

cylinder surface can have a considerable influence. From h/R=2 (or greater) 

the flow separates from the highest crest point. The Cd  does not grow and 

even tends to become lower for h/R, exceeding a value of about 4. The 

protrusion of the cylinder upstream from the weir plate, is causing the 

weir height p not having so much influence on Cd,  because independent of 

the weir height the water is almost stagnant underneath. 

Figure 14 Weir section with semi-circular crest and with circular crest, a 

as investigated by Rouvé/Indlekofer [32] and b by Sarginson [34] 
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Figure 15 Discharge coefficients of semi-circular crest with and without 

sucking-out air (from Rouvé and Indlekofer [32] and cited authors) 
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Figure 16 Discharge coefficient with attached nappe at varied crest radius, 

from Rouve and Indlekofer [32]. 
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3.3 The nappe-shaped overfiow weir 

A. Modular flow 

The crest shape of the nappe-shaped overflow weir was developed by experiments 

in scale models where the location of the lower boundary of an overflow nappe 

over a sharp-crested weir was exactly measured. All the radii of the curvature 

are related to a reference length for which is chosen the "design head" Hd  (in 

fact the design energy head). When the energy head of free overflow H 0  equals 

the design energy head Hd,  then one would expect that on the whole crest 

pressure is exactly atmospheric. In reality small deviations occur. The weir 

height p is not introduced directly, but in the form of the influence of the 

velocity head ha  of the approach velocity in relation to Hd.  The crest shape 

is found in Figures 18 and 19. All data are taken from USBR "Design of small 

dams", Ref. [38]. 

The nappe-shaped weir type has the property that when the real overflow height 

(H or H 
0 
 ) equals Hd,  the pressure at the crest and the downstream face equals 

the atmospheric pressure, and hence only small risk of unwanted aeration or 

cavitation occurs. When the real H value is smaller than Hd,  then pressure is 

higher than atmospheric, and when H is greater than Hd  the pressure is lower 

than atmospheric; the natural jet of the sharp-crested weir is thrown out 

farther when H increases. The advantage of this weir type is its high 

discharge coefficient. For instance, cornpared to the sharp-crested weir at the 

same discharge, the crest is now at the top level of the underside of the 

sharp-crested overflow nappe. This means that the equivalent crest height of 

the sharp crest lays 12.7 of Hd  lower than the nappe-shaped profile. An 

additional safety exists for conditions at an extremely high flood, because 

then the discharge coefficient becomes still higher as a result of lower crest 

pressures (see also middle figure of Figure 20). This advantage, however, is 

paid for in the form of an additional risk of cavitation. 

The very systematic investigations of this weir type (crest shape and 

discharge relations) have been performed by the US Bureau of Reclamation USBR 

and the Vicksburg Waterways Experiment Station of the US Army (WES) [43]. 



47 

The upper graph of Figure 20 is a revised version from [33], applying the 

definition of Cd,  similar as for the sharp-crested weir: 

Q = CdW (2/3) (Ij) H 3 / 2 	 (49) 

A few excercises and checks: 

It is observed in Figure 20, the upper graph, that with a small H the 

discharge coefficient reduces to 0.575. This case is comparable with the long-

crested weir for which was derived the theoretical discharge relation of Eq. 

6. This equation equals Eq. 49 when Cd = l/v" = 0.577 is applied, which is 

well in agreement with the value of Figure 20. 

Also one finds for a great weir height a discharge coefficient of 0.739. When 

this is combined with the reduction factor of 0.78 at small HO/Hd  (again a 

situation similar to the long-crested weir) then 0.739 times 0.78 is read in 

Figure 20 and this becomes 0.575 which is also in agreement with the 

aforementioned Cd  of 0.577. 

Also one can see that for H0 = Hd the discharge coefficient for a high weir is 

0.739. Reading in Figure 19 that Y/Hd = 0.127 one can derive that the 

equivalent sharp-crested weir is 1.127 Hd  below the water level. The discharge 

coefficient of the sharp-crested weir will be 0.739/(1.127 3 / 2 ) = 0.618 while 

from the Rehbock formula (eq. 39) combined with Eq. 49 one can derive C 0  = 

l.78/[(2/3Ij)1 = 0.603. The difference of 24% might be explained by the 

correction in h of lmm which is proposed by Rehbock and which for small scale 

tests results in a little higher value of Cd. 

B. Submerged flow 

Figure 21 shows the different types of flow which might occur at submerged 

flow and the decrease of discharge coefficient. This graph, to be found for 

instance in the USBR [38] was modified by Naudascher [24],  who introduced P/He 

on the horizontal axis. He  is the upstream energy head, which generally will 

be different from the design head (see in Figure 20 the central figure for the 

influence of H/Hd). 
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C. Modular flow with piers 

When the weir has modular flow conditions also the effect of piers and 

abutments is found in the ' tHydraulic Design Criteria" of WES [ 43]. 

The width w which has to be introduced in Eq. 49: 

w = [L -2(NK 
p 	a 	e 

+ K ) H  1 

L 	= total crest length between abutments and piers 

N = number of piers 

K p = pier contraction coefficient 

K 	= abutment contraction coefficient 

H: = upstream energy level (above crest level) 

K 
p 	a 

and K can be read from Figure 22 and 23. 

To check the order of magnitude of such an correction: 

when K = .025 
p 

and K = .1 
a 

and N = 3 and H /L = .1 
e 

the correction in crest length becornes: 

20 * 0.025 + 0.1) 0.1 = 0.035 (or 3.5 %) 

	

H0 	Water surface upstreom from weir drawdown 

,7 d 

h = __________ 	 ,Origin and apen of crest 
0 	

2q( P + h0)2 	 --xc --+-,  --------x -------- 

YC 

(51) 

Figure 18 Crest shape: symbols and definitions, from [38] 
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3.4 The napoe-shaned soillwav with 2at 

For the weir profile of the former section, the discharge coefficient of a 

tainter gate can be read in Figure 24 and the one for a flat gate in Figure 

25. The discharge coefficients are based on a pure two-dimensional situation. 

The WES [43] presented the discharge coefficients for a sharp-edged tainter 

gate as C. The discharge equation reads: 

Q = C G w 12g H 
	

(51) 

G is the gate net opening as indicated in Figure 24, w is the width of the 

gate opening and H is the energy head compared to the level of the centre of 

the gate opening. 

For the flat gate on a spillway crest the equation of discharge starts with 

the free flow discharge Q 0  (see for the determination of Q  section 3.3) and 

then a reduction factor is applied. In Figure 25 it is indicated that the 

reduction factor can be written as 

Q/Q0 = (H2" 2 - H1' 2)/H3/ 2 
	

(52) 

This equation is based upon a consideration presented in section 1.5, and on 

Equations 4 and 5. However, it seems illogical that the gate seat does not 

correspond to the spillway crest level, whereas in Eq. 4 the bottom level is 

the same as in Eq. 5. 
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3.5 Broad-crested weirs and dikes 

At broadcrested weirs the strearrilines above the crest are approximately 

parallel and there is a hydrostatic pressure distribution. From the upstream 

water level to the level on the top of the crest the Bernoulli equation can be 

applied. Two elements cause that a correction coefficient need be introduced: 

there is an energy loss by friction and the boundary layer displacement 

thickness 8 is a quasi-heigtening of the crest. 

The discharge equation for a broad-crested weir with a horizontal crest 

(sometimes called a long-crested weir) at modular (free) flow is found from 

section 1.5, Eq. ôa and 6b. 

q = h 1  12g (H-h 1 ) 	 (53a) 

For the condition of maximum discharge (equal to the conditions of free flow) 

hoids also: 

	

= (2/3) 
	

(53b) 

So the discharge equation becomes (introducing (H 0 -h 1 ) equals the velocity 

head) 

q = (2/3) H 12g H /3 
0 	0 

(At the crest the waterdepth h 1  equals also the critical depth h 1 = d= q2/g.) 

In practice also a correction factor C is introduced so that the discharge 

equation becomes: 

Q = Cw (2/3) H 12g H /3 
0 	0 

	 (54) 

(w = width) 

The discharge equation 54 is a theoretical one; a small correction is needed 

due to the boundary layer effect. 

Naudascher [24] gives the following theoretical corrections for a long-crested 

weir with adequate flow convergence, without extra flow contraction or other 

losses. It is based on a reduction of the net flow section by the displacement 

thickness 
6d 
 of the boundary layer: 

c = ( 1-2 	) 0- 	) 3/2 	 (55) 

	

w 	H 
0 



57 

The displacement thickness of the boundary layer depends on the crest length L 

and the Reynolds number (related to crest velocity and crest length). 

for ReL < 3 10 5  the 8 d/L = 1.73 . 	 (56) 

for ReL > 3 10 5  the &d/L = 0.037 Re 	 (57) 

To give an order of magnitude for the necessary correction for the last 

condition he presented the following table for C values, for the ratio W/L = 

0.2. 

H/L 

L(m) 0.05 0.075 0.10 0.125 0.15 

0.61 0.883 0.923 0.941 0.953 0.960 

1.83 0.923 0.446 0.958 0.966 0.971 

3.50 0.932 0.953 0.964 0.970 0.975 

15.25 0.953 0.967 0.975 0.979 0.982 

Table 3.5.1 Correction coefficient C in Eq. 54. 

The downstream waterlevel has only effect when the induced pressure at the 

downstrearn crest edge is higher than the hydrostatic pressure belonging to 

the modular flow condition. This occurs when h2>hd  (see Figure 26 for 

notat ions). 

Only when the back face of the sill is vertical, the submerged-flow 

pressure conditions downstream of this face is assumed to be hydrostatic. 

The waterdepth h 2  can then be calculated with the momentum equation (see 

section 1). The effect of the downstream water level is expressed as a 

reduction which is a function of the submergence factor: 

S = h 2 / h 0 	 (58) 

Here h0  and h 2  are the up- and downstream water levels above the crest 

level. The downstream water level at which submergence has influence, is 

higher than the critical depth hc, being 66% of H0 , because of the recovery 
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of potential energy. This recovery is stili more when the downstream sili 

face is sloped. In Figures 27 to 29 some data about discharge coefficients 

of broad-crested weirs and dikes are shown; they have been taken from DELFT 

HYDRAULICS [10], [11] and [12].  At the dike model where also skew 

conditions are tested (Figure 28) the downstream flume walls do not 

correspond with the natural direction of outfiow, so the discharge 

reduction factor CRS  (by submergence and by the skew approach flow) in 

prototype might be somewhat greater than the measured one. The effect of 

the skewness in Figure 28 is als greater than what is expected from the 

considerations of Schönfeld [35] mentioned in section 1.2. 

Figure 26 Notations: flow conditions at a broadcrested weir. 
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3.6 The morning glory spillway 

The morning glory spillway is a spillway which is circular (or a part of a 

circie) in plan. It is an option when a tunnel is applied in whatever way, 

for instance a diversion tunnel left in place after the dam has been built. 

The compactuess of its shape is favourable for its application. To prevent 

siphoning of the whole tunnel, which would cause a dangerous situation at 

extremely high discharges, a control section is created underneath the 

spillway with, for instance, a sudden widening of the tube section, or 

where air is let in to guarantee that atmospheric pressure occurs at that 

level. The level of this air inlet cuts off the discharge, and even when 

the inlet is fully submerged, velocities at the cut-off section are 

restricted to v"-2gh where h is the difference in level between the upstream 

energy head and the cut-off section. Figure 31 shows an example of how a 

cut-off section is introduced. 

It is not advised to apply the morning glory spillway for conditions where 

prediction of a maximum required discharge capacity is still very 

uncertain. At higher water levels Q increases with IIi, whereas for a 
straight spillway the discharge increases with H312.  Therefore, the risk of 

overtopping the dam is smaller in the latter case. 

In Figure 30 is shown the different types of flow which can occur when no 

aeration is applied. 

At condition 1, the discharge is determined by the overflow capacity of the 

crest. 

At condition 3, at full siphoning, the total head difference H is 

determinative, Q 	V'2g HT. 

At condition 2 the level difference H 
a 	 a 
determines the discharge. H is 

between the upstream level and the highest point where air at atmospheric 

pressure occurs. But when air pressure is lower than atmospheric, the 

effective H 
a  is greater. 

At condition 2 the Ha  moves downwards at greater discharge, because the air 

is sucked out gradually and the situation is very unstable. 

Without the introduction of a control section by widening and/or aeration 

it is in fact the downstream tube-end which, in condition 3, is the control 

section, while with aeration at the point "orrifice control" of condition 2 

the situation is stabilized at that level. See further the discharge curve 

of Figure 31. 
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Like the nappe-shaped spillway of section 3.3 the design of the crest of 

the morning glory spillway is based upon the atmospheric wall pressure 

condition related to a design discharge. And as in the straight spillway, 

this condition is established by measuring the lower nappe profile of the 

free overfali nappe of a sharp-crested weir (in plan circular) with radius 

R, see [42]. 

In the design of the morning glory spillway the requirements lead to a 

compromise. This design process is an iterative one. In the final design 

stage model investigations are often applied. The following elements should 

be taken into account. 

a 	At the condition of submerged crest and discharge control at the 

control section, the discharge has to pass any section without a wall 

pressure lower then atmospheric, so the distance z below the upstream 

water level follows from the conditions that z equals also the velocity 

head; so 

Q= 1r R2I 	 (59) 

hence at any level 

R . min = (Q/ 	(2gz) 	 (60) 

b 	As a first estimate in the iteration, the design head can be taken 

equal to the demand of the design water level departing from free flow 

and maximum discharge. With Figure 32 the outer radius R5  can be 

determined. As a next step H 
5 	 5 	 S 
can be read in Figure 33. R and H are 

the values which were tested in the sharp-crested weir test of Ref. 

[42]. The discharge is free flow when H/R ~ 0.45, and is submerged 

when H /R > 0.9 to 1. From H 
5 	 5 
and R the weir shape can be designed 

5 S  

from Figure 33. 

c 	The location where the curves, discussed in a and b, meet can be a 

first choice for the level of the discharge cut-off (control) section, 

but due to a discharge coefficient smaller than one (0.9 is advised in 

[38]) the control section is a little wider than the corresponding 

section of the curve obtained in a. Then the transition between the 

curves a and b is smoothed. Condition a can lead to a local or to a 

total widening of the upper part of the bell mouth as found in b, but 

this is not so when H d 
 /R is smaller than 0.225 to 0.3. 

s 
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The procedure does not lead straight forwardly to the final design, so 

other values of H 
d 
 and R have to be tried also. 

s 
The correspondance of the area of the control section with the tube sectjon 

further downstream, is also a point of consideration. 

However, when other Hd  values are tried, the real energy head H is not 

equal anymore to the design head. Figure 34 gives the correction for the 

discharge (but only for Hd/R = 0.3). In [38] it is advised to use this 

curve for other Hd/R  values also. But one should consider that at small H 

values the discharge relation approaches the one of the broad-crested weir. 

Therefore, in Figure 34 could also be completed with reduction factors (at 

a small head) for other Hd/R s values than 0.3; they are calculated from 

Figure 32 in combination with the theoretical discharge equation for a 

broad-crested weir of Equation 54. 

Another design element in the last stage of the design is related to 

cavitation. In contrast to a straight spillway the discharges smaller than 

the ones at the design head, cause wall pressures lower then atmospheric. 

Wagner [42] also performed tests with lower pressures than atmospheric 

underneath the nappe and these results could serve, by comparison with the 

designed shape, for estimation of the related pressures. 
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3.7 Labyrinth weir 

The labyrinth weir is used for increasing the weir length within a limited 

width of the opening. In the following the performance of the sharp-crested 

labyrinth weir is presented, following the recommendations of Hay and 

Taylor [ 1 6]. 

Figure 35 shows the Labyrinth weir in plan, and the applied symbols. 

The following parameters are importance: 

L/w = Length magnification 

QN
=  Normal discharge of straight sharp-crested weir with width w 

QL
=  real discharge over labyrinth weir 

h0 	= upstream waterdepth + lmm (like eq. 43) 

p 	= weir height above (upstream) bottom 

a 	= angle of the flanks; a equals a 	at a triangular shape
max 

S 	= submergence factor = h 2 /h0  

R 	= bottom step (downstream bottom lower) 

When h0 /p is small, the extra weir length tends to be fully effective and 

globally Q L/Qn = L/w within certain design limits. 

The following recommendations are taken from Hay and Taylor: 

- Crest-length magnification, L/w: 1f operation of higher head related to 

crest height is envisaged, then length magnification greater than 6 

gives little return when designing for h/p ratios exceeding .25. 

- Vertical aspect ratios, w/p: It is recommended that the adopted value of 

the vertical aspect ratio should not be less than 2 in the case of 

trapesoidal weirs (in plan) and not less than 2.5 in the case of 

triangular weirs. Nappe interference effects will be negligible on a 

weir designed in accordance with these recommandations. Where p is very 

high, the value of w/p ratio may be less than 2 providing the ratio on 

the head to the cycle pitch h 0 /w does not exceed 0.25. 

- Side-wall angle a: This factor is of primary importance in determining 

the performance of the labyrinth weir. Furthermore, the correct choice 

of the side-wall angle a does not affect the structural costs. For 

maximum performance, the greatest value of the side-wall angle should be 

adopted in the design, i.e. triangular plan-form weirs should be used 

wherever possible. 



71 

1f the triangular plan-form is unacceptable for other reasons, a 

trapezoidal plan-form having a side-wall angle not less than .75 times 

the maximum value (given by the triangular plan form), may be used 

without incurring a large loss of performance. 

- Channel-bed elevation differences: Downstream interference which has 

small detrimental effects on performance can be reduced by decreasing 

the elevation of the downstream channel bed, and can be completely 

eliminated for the operating range recommended here, if the difference 

in channel-bed elevation is equal to or greater than the maximum 

operating head. 

- Aprons: Both upstream and downstream aprons are detrimental to 

performance. However, they may be necessary for structural reasons. In 

situations where a fall in the channel-bed elevation occurs on the 

downstream side of the weir, the size of the downstream aprons will not 

or nearly not affect performance, provided the channel depth at all 

points of the downstream channels is greater than the expected depth of 

flow in the upstream channel. 

- Crest sections: Under high flow rates labyrinth weir discharge tends to 

be, to some extent, independent of the weir-crest coefficient; the use 

of complex, expensive crest sections is unnecessary from the hydraulic 

point of view. 

- Submergence: Because labyrinth weirs operate under smaller head than a 

corresponding linear weir discharging the same quantity of water, in a 

situation which usually involves operations under drowned conditions the 

use of a labyrinth weir will increase the degree of submergence. It is 

not recomrnended that labyrinth weirs be used where they would usually be 

subject to operatlon under heavily drowned flow conditions 

It has been found by Hay and Taylor that the Villemonte equation for the 

effect of submergence (Eq. 45) can be applied here too: 

Q = Q 0  [1 - (h2/h0)'.5].385 

Figure 36 and 37 give the discharge relations for the triangular-plan and 

the trapezoidal-plan labyrinth weir for horizontal bottom and for deepened 

downstream bottom. 

* Authors comment: This is not literaly true because at submerged flow a 
labyrinth weir placed over the whole canal width, downstream of a narrow 
sluice, can serve as discharge spreader. 
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3.8 Gates with underflow 

In this section only two-dimensional situations will be considered, without 

shafts and slots. In this section results from different authors duplicate, 

but the reason of referring to these (nearly equal) results is that they 

served for each of the authors as the basis for further analysis; 

therefore, it was considered only fair to present also the results from 

where they started. 

When the upstream energy head is H and the pressure head just downstream 

of the gate is h 1 , then the Bernoulli equation leads to the following 

discharge equation. 

q = C 
c 
 a 'I(2g (H0-h 1 )) 	 (61) 

C is the contraction coefficient of the jet, a is the gate opening. 

In the case of the free jet the downstream pressure head h 1  equals Ca. 

The flow contraction depends on the geometry: this results in an influence 

of D/a in the case of a culvert with height D or, at free surface flow, of 

h/a (where h is the upstream waterdepth). But the flow contraction also 

depends on the pressure distribution at the top of the jet contraction. 

When the jet is subrnerged the piezometric head there is constant; at a free 

jet the pressure itself is constant (atmospheric). The influence of the 

gravity can then be expressed in terms of the Froude number. 

Fr = V /I(g Cca) 	 (62) 
c 

(Vc is the velocity at the jet contraction) 

When Fr is great enough the gravity influence disappears and the submerged 

and the free flow have the same contraction. This is found both in the 

theoretical study of Rouvé and Khader [33] and the experiments of Nago [23] 

presented hereafter. 

When the upstrearn water has a free surface, the Froude number and the 

upstream waterdepth are coupled and Cc  can then be expressed in terms of 

h/a only. At free outflow from a culvert Cc  depends on both D/a and the 

Froude number, as shown in Figure 38. 

The Cc  can be derived theoretically, as for instance published by Rouvé and 

Khader [33]. Friction effects are neglected in the derivation. The interes-

ting presentation of Figure 38 is not directly suitable for practical use 
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because the C value and the discharge are both needed to calculate the 

Froude number, and then C depends on this Froude number. In a design graph 

the relation a/D, a/d and a/H 0  should have been presented (d = critical 

depth, H0  = energy upstream). A global check consists of recalculating at 

different points in Figure 39a the Froude number and the contraction 

coefficient C and comparing these resuits with Figure 38: no deviations 

were found. 

When the contraction coefficient is known, the free flow discharge can 

be expressed theoretically by application of the Bernoulli equation as in 

Eq. 61. 

From dimensional consideration it can be seen that Eq. 61 and the influence 

of the Froude number can be combined in a single presentation. 

q = Cd v" a 2 gH 	 (63) 

Cd is a discharge coefficient. 

But in general the following expression is used: 

Q=CwaI(2ghQ ) 	 (64) 

It can be theoretically proved, see section 1.5 Eq. 8, that the discharge 

coefficient Cd  of Eq. 64 equals: 

Cd = c/'/(1 + Ca/h0 ) 
	

(65) 

The advantage of the use of Eq. 64 and 65 over Eq. 61 is that no iterative 

procedure is needed; from C and a/h 0  the q can be computed. 

Cozzo [9] investigated the contraction for sector gates and flat gates with 

free surface flow and found systematically that the angle near the edge was 

determinative for the discharge coefficient (Figure 39a). The flat gate and 

tainter gate show the same results. Figure 39b, derived from the curves of 

Figure 39a, shows the discharge related to the upstream energy head. 

In Figure 40 the discharge relation for free flow is presented for a tam-

ter gate located in a roofed culvert with free outflow, from WES [43].  The 

upstream pressure is expressed in terms of an energy head in the culvert. 

In fact, it is the contraction coefficient which is presented in Figure 40. 
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From the rnodular flow relations of Cozzo the limiting conditions for which 

the downstream water level does not affect the modular flow discharge is 

presented in Figure 41. This relation is found by calculating the 

contraction coefficient C ,  from the discharge coefficient Cd  (the inverse 

of Eq. 65), and then calculating the conjugate depth of the hydraulic jump. 

The C 
c 	0 

is from h /a = 2 on nearly constant. 

In Figure 42 are presented calculations and measurements of the submerged 

discharge relations at a vertical sharp-edged gate plate. The measurements 

of Henry are found in Rouse [31],  and are also discussed in Naudascher 

[24]. 

The resuits of the computations presented by Rouse/Naudascher [24, 31] were 

based upon the theoretical values of the contraction coefficient similar to 

the ones presented in Figure 38. 

Descrepancies were found which were attributed to disturbances like uneven 

flow distribution, and so on. The author performed new computations, 

presented in Figure 42, based upon slightly smaller C values (see Figure 

42 also), and he found a fairly good agreement with the measurements. The 

use of adapted Cc  values is useful when the discharge relations of complete 

structures are performed with the computer program of Chapter 2. 

There exist also measurements which are in agreement with these lower 

values. For instance, Naudascher [24] presents similar measurements as the 

ones of Cozzo, but then from Gentilini. These results have for great h 0 /a 

(about 12) values a Cd  of 0.585, corresponding with a Cc  of about 0.6. 

Nago [23] performed a very systematic research on the free flow 

characteristics of different types of gate edge. He distinguishes also, as 

it was presented by Rhouvé and Khader in Figure 38, a flow contraction plus 

an effect induced by gravity. Because Nago only considered free surface 

flow the results are simpler. The contraction coefficient he obtained 

theoretically. He presents the effect of gravity as a correction which can 

be added to the contraction coefficient at submerged flow. The correction 

is a function of a/h0  (Figure 44). The calculated discharge coefficients 

are compared with measurements, Figure 46. 

The results for the three gate types of Figure 44 are presented in 

Figure 45. 

Boiten [6] investigated vertical plates with round edges at underflow 

conditions. The shapes are presented in Figure 47. The discharge relations 

presented in Figure 48 show that all the circular shapes have the same 
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discharge coefficient. It is observed that from h 0 /a being about 2.5 that 

this parameter has nearly no influence on the contraction coefficient of 

the investigated circular shapes. At smaller values this parameter has an 

important effect but measurements are then also scattered, due to air-

entrainment. 

The discharge coefficient can be much higher for the rounded edge than for 

the sharp-edged gate. It is remarkable that Boiten found a contraction 

coefficient for the sharp-edged gate which is higher when compared to the 

resuits presented above. 

The results of a series of tests of reversed Tainter gates in completely 

submerged culverts (Pickering [27])  with and without divergence in the 

downstream culvert part, are presented in Figure 49 and 50. This is in this 

part of the manual one of the few cases which represents internal flow. But 

the reversed tainter valve is typically in use in a hydraulic structure 

(high head navigation lock) and nowhere else. 
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Figure 38 Contraction as function of Y 1 /a and Froude number, from 

Naudascher [24] and after Rouve and Khader [33] 
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3.9 Gates with overflow 

Two examples of discharge relations of overflowing gates are presented, the 

drum gate in Figure 51 and the flap gate in Figure 52. The discharge 

coefficients refer to the following equation: 

q = Cd (2/3) V(29) H 0 3/2 
	

(66) 

Resuits of a model investigation of a flap gate on top of a vertical 

(Stoney) gate are presented in Figure 53. The angle a was varied between 27 

and 68 degrees. As reference the results of Sarginson are also presented 

(see section 3.2). 

As for other gate types it might be that, depending on the crest shape, 

some discharge data presented in section 3.1, 3.2 or 3.3 can also be used 

for overflowing gates. 
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3.10 Gates with combined under- and overfiow 

The discharge relation of gates where simultaneously over- and underfiow 

occurs, is not fundamentally different from the situation where only one of 

the two occurs. Whether the situation is suitable for an estimate of the 

discharge depends on how exactly the conditions just downstream of the gate 

are known. The overfali nappe should be fully aerated, but that is also the 

case for nappe flow without underflow. 

Naudascher [24] discusses an example of a calculation where the momentum 

equation is applied downstream of the gate under the assumption that just 

downstream of the gate hydrostatic pressure occurs, even at the sloping 

bottom. This is only justified when no recovery of potential is to be 

expected. 

Figure 54 shows the conditions, the symbols and the momentum equation as it 

was applied to compute the water-level difference (h 2 - h 1 ). The coeffi-

cients Ca  and  Cc  related to the nappe and the jet respectively, follow from 

the nappe thickness (in vertical sense) at the end of the gate crest and 

the contracted jet thickness (contraction is about equal to the discharge 

coefficient). 

Figure 55 shows the computed resuits compared to measurements. 
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3.11 The Howeli Bunger valve 

A Howeli Bunger valve (also called hollow-jet value or cone valve) is 

applied at the downstream end of a tunnel. It has the function of spreading 

the jet. There is also a very good aeration and hence the cavitation risk 

is reduced. The spreading of the jet is favourable for the stilling basin. 

The central cone is fixed to the pipe through supports which are internal 

vanes. The cylinder which moves around the pipe is the valve, see further 

Figure 56. 

Gieseke [14] performed the theoretical study on the discharge relations of 

the Howell Bunger valves and compared the results with measurements. He 

applied potential flow theory and assumed radial symmetrical flow. 

The gate opening (S/D), the cone angle (2a) and the cone diameter (D-2b) 

was varied (see Figure 56). 

For a = 450 and b = 0 the computations were verified with different 

experiments, which showed a good agreement (Figure 58). Figures 57 shows 

the results of the computations with systematically varied parameters. The 

values are discharge coefficients related to the tube section and not to 

the gate opening. 
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3.12 Conduit outlet 

The free flow loss of the conduit outlet depends on the Froude number 

similarly to a gate with underfiow at free flow conditions (section 3.8). 

1f the water in the fully filled conduit fiows into the air, the discharge 

capacity of the whole tube depends on the level at which the atmospheric 

pressure can be assumed to act. At high discharge (great Froude number) the 

influence of the gravity tends to disappear and the centre of gravity of 

the pipe section should be taken as pressure head. Figure 59 shows resuits 

for a circular conduit, published by the US army Waterways Experiment 

Station [43]. 
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4. LOSSES OF COMPONENTS UP- AND DOWNSTREAN OF THE CONTROL SECTION 

4.1 Orifice and intake losses 

When the flow contraction is known, both orifice and intake (or entrance) 

losses can be calculated with the momenturn equation in the region 

downstream of the section with maximum flow contraction (assuming 

hydrostatic pressure at this section). Or, at submerged flow, the Carnot 

equation can be applied. The flow-contraction coefficient in the orifice or 

in the entrance is C 	with an average velocity in the contraction V and a 

culvert velocity V downstream (Figure 60). Now introducing for the average 

flow velocity in the orifice V the Carnot equation is: 

AH = (V - V)2/2g = (V0/C0 - V) 2 /2g 	 (67) 

= culvert area 
A0  = orrifice area 

V. = Q/A0 	 V = 

½'///////////////////t

A]~ 
A 	 V 

Vr  V0/t 
orrifice losses 

Vm r V IC 

entrance losses 

Figure 60 Orifice and entrance losses 

When the culvert is wide, compared to the orifice, the influence of V can 

be neglected. When the culvert section is not widening (intake condition) 

then V = V and the entrance loss becomes: 
c 	0 
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_1 
AH = 1< V2/2g = (C 	- 1)2 V2/2 g 	 (68) 

e 	e c c 

The flow contraction coefficient C is derived from the orifice tests 
c 

presented in USBR [38] and shown in Figure 61, series 1. The conversion 

from the discharge coefficient C from Figure 61 to the contraction 

coefficient C is done as foliows: 
c 

At low velocities (low Froude number) it can be derived that: 

Ah AH 

The discharge relation of Figure 61 can be read as: 

AH = Q 2 /C 2  A 2 2g 

From (67) it follows that: 

_1 
AH = (V2/2g)(C 	- A/s) 2  = (Q 2 /A 2 2g)(C-' - Als)2 

0 

Combining the two expressions for AH: 

c = C S/(S + CA) 	 (69) 

From the contraction coefficient the entrance-loss coefficient of a long 

culvert can be derived by using Eq. 68: 

= (C' - 1)2 	 (70) 

From the C values presented in Figure 61, the Ke  values of a culvert 

become: 

C 	0.56 	0.58 	0.61 	0.69 	0.83 
c 

K 	0.62 	0.52 	0.41 	0.20 	0.04 
e 

The discharge coefficients of Figure 61 clearly show that the discharge 

coefficient C will increase when the culvert length increases. This is 

caused by the spreading of the jet into the culvert (two-step flow 

expansion) resulting in outlet loss reduction. The small value of C for a 

sharp-edged orifice is in agreement with other experiences. 



100 

Figure 62 is an example showing an inlet of a sloped culvert which can 

remain partially filled with air or become fully submered, only depending 

on the shape of the entrance and H/D. In the case of the sharp-edged 

entrance there is a control section formed at the inlet and due to the 

sharp edge the flow section is largely reduced. These elements affect the 

discharge capacity much. The line for the full culvert is only an example, 

the real discharge curve depends on the culvert slope, the culvert length 

and maybe the presence of air caused by vortices. 

Figure 63 shows the sharp-edged box culvert inlet with a discharge 

behaviour similar to the sharp-edged coridition of the circular culvert of 

Figure 62. 

The discharge formula which is used in Figure 63 is: 

Q = Cd w D I(2gh) 
	

(71) 

where h is the height of the upstream water level above the bottom, D the 

culvert height and w the culvert width. The expression (71) is similar to 

the one that is often applied for gates (see Equation 64). The results are 

comparable as well. (Figure 39 and 46). 

Figures 64 to 66 show intake losses of concrete culverts. The section where 

the gates are located is used as reference culvert section. 

It can be seen that the nicely-shaped inlet of Figure 64, upper part 

without slots, piers etc. has the lowest intake-loss coefficient, namely 

0.16. For other conditions the loss coefficients vary between 0.2 and 0.8. 

The losses in hydraulic models all seem to be lower than in prototype; an 

explanation was not found in the reference [43].  Piers, slots, support 

beams, etc. they all are elements that influence the hydraulic losses. 
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4.2 Friction losses 

In Figure 67 the Moody diagram is presented. This diagram shows the wall 

friction for pipe flow. The results can also be applied for free-surface 

flow if the pipe diameter D is replaced by the hydraulic diameter Dh  or the 

hydraulic radius Rh. 

D=Dh=4Rh 	 (72) 

Rh is the hydraulic radius which is defined as the ratio flow-section 

wetted-perimeter. 

The Moody diagram presents the friction coefficient related to the fully 

developed boundary layer where the velocity profile harmonize with the pipe 

diameter and the wall roughness. 

The C f  coefficient is related to the wall friction which equals the 

boundary shear stress t in the flow: 

t = C f  (0.5 p ü 2 ) 	 ( 73) 

(ü2 represents the averaged velocity in the pipe). 

The Reynoldsnumber TJ D/v is related to the average pipe velocity and the 

pipe diameter (v represents the kinematic viscosity, with a magnitude 

of about 10_6).  For prototype structures the Reynolds numbers are so large 

and the wails so rough that only the horizontal line parts of Figure 67 are 

relevant. The friction formula for large Reynolds numbers is approximately: 

C f  = 0.0606 [log (3 
	

(74) 

For instance, in Thijsse [36] the following k values are found: 

old concrete 	k = 10-20 mm 	rusty steel 	k = 	1-2 mm 

plaster 	k = 0.5 mm 	riveted steel 	k = 0.5-2 mm 

smoothed concrete 	k = 0.2 mm 	welded steel 	k = 0.1 min 

rock excavation 	k = 0.2-2 m 

sand in movement 	k = 10-100 mm 	stone revetment 	k = 5-20 mm 

slopes (+ vegetation) 	k = 0.1-0.2 m 	riprap k = D90 
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Figure 68 illustrates how at the entrance of a rough pipe the local friction 

developes with respect to the distance. Cfx  is the friction coefficient 

averaged from the mouth to the distance x. The higher C f  at the mouth, is due 

to the greater velocity gradients near the wall (at a contraction the velocity 

profile tends to be block-shaped, without a boundary layer). 

More general information about how friction developes with respect to the 

distance can be found in Figure 69, from Harrison [15]. 

The friction coefficient has again been expressed in terms of a distance-

averaged value. Such friction tests are performed with a plate in an unbounded 

flow. In practice, friction in a pipe or in a culvert will not fali below the 

friction belonging to the fully developed flow in the culvert section over 

long distances. The latter can be derived from the Moody diagram. Harrison 

[15] shows that in the transition region between laminar and turbulent flow 

there can exist lower C f  values than presented in Figure 69. This is similar 

to what is indicated in the Moody diagram of Figure 67 in the transition 

region. Related velocity profiles are, among others, found in Kolkman [20]. 

Pugh [26] presents measurements in a rectangular prototype conduit. The 

friction that was measured at the pipe inlet was greater than Tullis found 

[ref. 371. Shear stress became constant at a distance x/D = 20 which is in the 

range of what Tullis found. The other test results of Pugh confirmed what is 

already known about velocity profiles and boundary layer development. 

B. The developed flow 
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4.3 Slots 

Loss coefficients of slots are presented as fractions of the velocity head 

of the average flow velocity in the culvert section where the slot is 

located. 

LïH = 1< Ü2/2g 
	

(75) 

In general, the slot coefficients are small compared to other losses. A 

possible additional effect of a slot is, when located just upstream of a 

diverging section, that the flow spreads better over the divergence owing 

to the induced turbulence. Then there is a greater recovery of potential 

energy and reduction of energy loss. 

Levin [22] tested a number of slot shapes located in a round tube (diameter 

210 mm) along the whole circumference and in the walls of a squared 

section, having a height and width of 150 mm. Figure 70 shows the 

investigated slot sections. 

The results of the test in the squared tunnel were not accurate because of 

the deformation of the test section caused by hydrodynamic pressures. 

Conclusions were: 

Between Reynolds numbers of 3.5 10 and 8 10 (related to the tunnel 

section) no effect of the Reynolds number was found 

Low pressures locally appearing downstream of the slot faded out at a 

distance of 12 diameters behind the slot 

Rounded corners gave a decrease in loss in the order of 7-15% 

The tests in a circular tube with the slot all around (only the slots with 

sharp edges were tested again) show that the influence of the Reynolds 

number was still observed till Re = 106 ;  this is amazingly high. The losses 

are shown in Figure 71. 



110 

0.050 
v 

  

0.045 

31.5 

	

mrn J 	
[i1zes 	

0.040 

0.035 

JT1i JTL 	:.::: 
{f9L j1 

0.020 

0.015 

0.010 

 

form 

 

10 

 

to 	Re 

Figure 70 Slot sections of the 
	Figure 71 Test resuits with the 

tests by Levin [22] 
	

circular tube section 

(D = 209.5 mm) 

A theoretically plausible approximation is that losses are proportional to 

the length (along the perimeter of the culvert) and inversed proportional 

to the culvert section. 

The further elaboration performed by Levin is not presented here; the 

empirical formula are complex and slot losses as he found them are low 

compared to other losses and their inaccuracies. 
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4.4 Exit losses and hydraulic jump relations 

Exit losses are defined here as losses which occur at the transition of an 

outlet into a downstream canal or a larger basin like a lake or the sea. In 

certain cases the control section of the structure can alos be at the exit. 

The exit can be an abrupt expansion or a gradual expansion with divergent 

walis and/or a sloping bottom. 

A reduction in exit losses gives an increase in discharge in the case of 

submerged flow or intermediate flow (for definitions see Chapter 1). 

However it has no effect on the discharge if the downstream water level is 

so low that modular flow is involved. On the other hand, the modular 

(maximum) flow will still occur at a higher downstream water-level. So it 

is meaningful to calculate exit losses in case of a fully submerged flow 

(at low velocities), and of intermediate flow till the limit of modular 

flow. 

The difference between submerged and intermediate flow causes that at 

intermediate flow the exit losses with abrupt expansions should always be 

calculated with the momentum equation whereas at fully submerged flow the 

Carnot equation can be applied as well. 

When no special measures are taken, the exit loss coefficient at an 

(abrupt) large expansion is equal to 1, which means that all kinetic energy 

is lost. 

1f the outflow runs into a canal that having a limited section, it foliows 

from the momentum equation that some of this energy is regained. 

From the Carnot equation can be find for instance: 

AH = (V1 - V 2 )2/2 g  

This shows that a greater V2  yields smaller losses. 

Expansions that diverge gradually also regain potential energy, leading to 

a further reduction of losses. 

At modular flow conditions in the control section, super-critical flow will 

occur downstream of this section, where energy loss takes place by bottom 

friction and/or a hydraulic jump. 

It has been decided to include in this section also the hydraulic jump 

relations. They are important when studying the limit-conditions downstream, 

where modular flow can still occur. 
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A. Abrupt expansions downstream of the control section 

It has been discussed in Chapter 1, that at an abrupt (900)  expansion the 

momentum equation can be applied and losses can be calculated because then 

the hydrodynamic forces, exerted on the back face of a weir, a gate or an 

orifice are known to be hydrostatic. So the forces exerted on the down-

stream water by the rear side of the outlet are related to the local water 

level. At the inflow of the downstream water, the pressures and the 

advective momentum flux (fluid density x discharge x velocity pQV) are 

often also known, being the pressure and momentum advection which belongs 

to the modular flow condition of the control section. 

1f there is a nappe over a shrap-crested weir, the highest downstream water 

level at which modular flow in the control section can exist, is the water 

level equal to the crest level. Together with the nappe momentum, the down-

water level h3  at some distance further downstream can be determined. In 

Figure 72 this is illustrated for a nappe with width w, flowing into a 

downstream basin with width W. The coefficients m 1  and m2  refer to 

discharge coefficients. The aim of Figure 72 is to calculate h 3  when a 

certain H is introduced. Solving these equation is laborious but the 

procedure of Chapter 2 can be helpful. 

A similar computation can be set up for a submerged hydraulic jump. The 

discharge relation of flow under a gate can be treated sirnilarly to Q in 

Figure 72. 
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from d 2  and Q, the value of d 3  js calculated with B (may be using the 

program of Chapter 2). 

Figure 72 Exit conditions with a submerged hydraulic jump caiculated with 

the momenturn equation 
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B. Hydraulic jump relations (two-dimensional) 

Only those hydraulic jump data which are related to the computation of 

hydraulic losses are presented here. Not inciuded are considerations about 

the jump stability, the design of stilling basins etc. 

The application of the momentum equation for the hydraulic jump is well-

known, the results are presented in Figure 73. 

Figure 73 is based on the momentum equation for a rectangular prismatic 

canal: 

'/ipgd 2 + pq(q/d 1 ) = ½pgd + pq (q/d 2 ) 
	

(76) 

Division by pg and introducing the Froude number F for the upstream side 

= 	gives 

+ dF 2 = ½d 2 + (d/d 2 ) F 	 (77) 

or: 

(1 - d 2 /d 1 )(1 + d 2 /d 1 ) = 2 F(1 - d 2 /d 1 )/(d 2 /d 1 ) 

resulting in 

d 2 /d 1  = ½ (- 1 + 'v'l + 8Fi) 	 (78) 

This expression is found in many references. It is only valid at a well 

distributed flow, because the momentum-flux does not contain a correctlon 

factor. 

In Figure 73 the following symbols are used. The index 1 refers to the 

oncoming supercritical flow with depth d 1 , velocity V 1 , and index 2 to the 

conditions behind the jump. 

The term h refers to the difference in depth h. = (d 2  - d 1 ). The symbols 

and H 2  refer to the energy levels. 

Figure 73 can be well applied for the hydraulic jump at a horizontal bottom 

when the starting conditions upstream of the jump are known. This is for 

instance the case at free flow models of a gate. 



115 

For the design of stilling basins the author has designed a chart variant 

from which directly the level of the bottom of the stilling basin can be 

derived, see Figure 75. This is done by introducing the critical depth d 

as the length by which all other length parameters are made dimensionless. 

d 1  and d 2  again refer to upstream and related conjugate waterdepth. H 1  and 

H 2  is respectively the upstream and downstream energy head. 

The critical depth represents the discharge per unit of width: 

d c = (q2/ g )1/3 
	

(77) 

The required energy loss AH of the hydraulic jump related to d determines 

the Froude number. The bottom level of the stilling basin also follows 

directly, because H2 /d can be read in Figure 75. A second curve with 10% 

extra reserve in conjugate depth (advised for the USBR stilling basins, see 

Ven Te Chow [40])  is also included. 

The use of the graphs, Figures 73 and 75, can be replaced by the 

computation procedure of Chapter 2 (introducing directly the momentum 

equation). In that case the momentum-flux can contain correction 

coefficients for the uneven velocity distribution. 

Particularly the momentum flux of the incoming flow will be sensitive to 

values greater than 1. (see further Chapter 1, Figure 1.3). 
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C. Hydraulic jump on a slope 
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For a sloping bottom the two-dimensional hydraulic jump relations are also 

known, see Figure 76. It is important to know at which downstream water 

level the modular flow gets (partially) submerged if the upstream jet is 

the outfiow of a gate or a weir nappe . With Figure 76 this can only be 

found with an iterative search. Therefore another graph has been prepared 

in Figure 77, using the resuits of Figure 76. 1f tH, and d cr are known, the 

dip in the water level can directly be read. AH the difference between the 

energy level of the incoming flow and the downstream water level, and the 
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dip is defined as Êh. 1f the dip is known the Froude number v 1 // d 1  can be 

found, see the expression mentioned in Figure 77, and from that the length 

of the jump can be read in Figure 76. 

A H/dc 

Figure 77 The dip in the water level at the hydraulic jump on a slope. 
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D. Gradual exoansions 

For submerged flow at very low Froude number, losses in gradual expansions 

are known from internal flow data. 

The expression to define the losses is related to the Carnot equation at 

abrupt expansions: 

AH = F (V 1  - V 2 ) 2 /2g 	 (78) 

Free-surface flow tests were carried out by Formica [13]; Bos [7] compared 

these resuits with Idelciks resuits for internal flow with various top 

angles (see Figure 78). Other types of expansion investigated by Formica 

are shown in Figure 79. 

The scale of the Formica tests was quite small and presumably the Reynolds 

number will stili have had influence. This, however, cannot be the explana-

tion of these losses which are twice as low as those of Idelcik. Idelcik 

suggested that the expansion ratio is of little relevance. This is not a 

priori evident. The curves of Idel'cik are for a = 90 a little higher than 

the Carnot losses which were based on a hydrostatic pressure distribution 

just after the expansion. This agrees with other references. So for this 

moment it seems advisable to multiply all formica coefficients by 1.2. 

In Figure 80 Idelcik data are presented for a gradual expansion with 

outflow in a large canal, using an optimal diffusor angle (low losses). 
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Figure 78 Expansion losses in closed and open conduit flow, from Bos [7] 

and after Formica [13] and Idel'cik [17] 
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Figure 80 Determination of optimal diffusor outlet shape at constant depth 

condition, from Idelcik [17] 
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E. Hydraulic jump in a gradual expansion 

Downstream of a control section often divergent sections are applied. These 

have two advantages: 

- lower losses, particularly at the submerged flow conditions 

- spreading of discharge over a larger width 

Systematic test results are only available about conditions with a 

horizontal bottom. 

Two conditions can be considered: 

- Free hydraulic jump, systematically investigated by Woodbury and 

Padmanabhan, ref. [44] 

- Submerged hydraulic jump (behind a gate with non-modular flow), 

investigated by Abdel-Gawad and Carquodale, ref. [1]. 

The hydraulic jump in a divergent section is called "radial hydraulic 

jump". The width at the throat w and the divergence angle 20 determine the 

radius r 1  before the jump (being ½ w/sin (e/2)) and the phenomena in the 

divergent part are supposed to be a part of a circular hydraulc jump 

condition. 

For the free radial hydraulic jump the sequent depth can be derived from 

Figure 81. There is still a slight dependence on the ratio of the radius r 2  

and r 1 , so only a first estimate is obtained. 

For the submerged hydraulic jump (definition scetch is Figure 84) the 

relations found by Abdel-Gawed and Corquodal [1] are presented in Figure 85 

and 86. 
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Figure 81 Definition scetch free radial jump 
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4.5 Trash racks 

The losses at trash racks depend 0fl: 

shape of the bar section, 

blockage factor or solidity (S) which can also be written as Zw/W (w= 

width of one single bar, W = width of the whole flow section if bars are 

absent), 

the angle of approach of the flow. 1f there is horizontal flow and the 

bars stand inclined, the sin(e) is introduced, with e = 900 when the 

bars are vertical. 

when the bars stand vertical and the flow is horizontal but not 

perpendicular to the plane of the rack, the skewness angle a is 

introduced with 0 = 0 if the flow is perpendicular, 

the other structure elements such as trusses, silis, slots which are 

related to the rack. 

Losses can be largely influenced by a skew approach angle, irregular flow 

distribution, trash and ice. 

1f Va  is the approach velocity (or, when there are no bars, Va  is the 

average flow velocity in the trash rack section) the losses are expressed 

in terms of: 

AH = C (V 2 /2g) 	 (79) 
tr a 

(this is method C of section 1.9 and Figure 8) 

When the trash rack is inclined, the loss reduces to: 

AH = C 	(V 2 /2g) sin e 	 (80) 
tr 	a 

Short bars (seen in flow direction) have higher losses than longer bars. 

This is caused by the tendency of reattachment of the flow at the longer 

bars. 

1f the length is introduced as t, the increase in t is effective until 

t/w > 5, see Figure 90. The effect of streamlining is important, see Figure 

88, but the effect reduces when there is a skew approach flow. For further 

data of flow resistance of different shape see also next section on bridge 

piers. 
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Figure 89 shows C tr 
 values for different sections of bars and various 

values of the solidity S. 

Figure 90 contains information for greater blockage of flow. This 

information is important because if the other trash-rack elements 

(mentioned under point E) are taken into account the blockage of the flow 

is much greater than from the bars only. 

Trusses are sometimes badly shaped so that loss coefficients correspond to 

bars with a small t value. 

In section 1.9 the use of the Carnot formula for the computation of trash 

rack losses has been discussed. Orsborn [26] also discusses this point, 

referring to earlier work of Escande. For the contracted flow, a 

contraction coefficient of .9 should be applied if S is in the order of 8% 

and this coefficient is 0.65 if S is in the order of 50% (the contraction 

coefficient is related to the net area between the bars). The contraction 

coefficient is rather low and the important flow-area reduction can cause 

that at an increased discharge (at free surface flow), modular flow 

conditions occur causing a further decrease of discharge capacity. 

In Figure 91 the losses are presented at skew approach velocities. 

Allthough an empirical formula, constituted by multiplication of two 

independent factors has its inherent inaccuracies, the losses correspond 

within 20% with the other presented data. But in view of other inaccuracies 

in the estimation of trashrack losses this is still acceptable. 

INFLUENCE OF APPROACH-FLOW ANGLE ON BAR-LOSS COEFFIÇIENT 

Conciitions: So1idiy = 	0.37; Vertical angle 	e=90 0  

Bar 
Shape 

Flow Bar Loss 	Coefficient, 
* 

Ctr  Angles 

a= 00 1.13 0.86 0.78 0.48 0.42 035 
cx=30 °  1.46 0.76 0.71 0.43 0.68 0.22 
cx=45 °  2.05 1.29 1.29 0.94 1.29 0.67 
a=60 °  4.26 2.45 2.81 2.19 3.05 1.84 

Ctr is loss coeficient A H=Ctr  V 2/2g 

Figure 88 Trash-rack losses at skew approach flow, from Orsborn [26]. 
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4.6 Resistance of bridge piers 

In the following, only very schematised cases are considered. For example, 

no deepening between the piers by the locally enlarged bedload capacity or 

by scour and no rough bottom protection around the piers are taken into 

account. The flow is assumed to be parallel to the canal or river axis. 

Moreover, all experimental data were obtained by tests performed in 

rectangular flumes and all data presented here relate to rectangular flow 

sections. The ratio of water-depth over pier-width is not considered, 

although there are indications that this parameter rnight have some 

influence (Naudascher [251). 

The above simplifications permit the application of one-dimensional 

hydraulics, in the same way as discussed for other hydraulic structures in 

section 1.4. 

Three regimes of flow are distinguished (Figure 92); types A, B and C refer 

to the WES classification [43]. 

A Subcritical flow condition (fully submerged and intermediate flow). 

In this situation the water level upstream of the bridge depends on the 

initial water depth (d.) and the discharge of the undisturbed river. The 

initial water depth also corresponds to the depth downstream of the 

bridge (d 2  in Figure 92) apart from a slight modification by friction 

and head loss due to deceleration. 

B Modular flow condition (critical flow). 

A unique relation between the water level upstream of the bridge and the 

discharge will occur here. It is usual to define the critical depth in 

the control-section by using the full width of the flow section between 

the bridge piers, neglecting the effect of side contraction of the flow. 

The necessary correction coefficients are found from empirical data. The 

energy level which belongs to the critical depth between the piers 

determines the energy level upstream of the bridge and the corresponding 

upstream water level can also be calculated. The water level downstream 

of the bridge can be either supercritical or subcritical (see Figure 

92). 1f the initial water level is in between these levels, the super-

critical water-level will occur in combination with a hydraulic jump 

further downstream. 1f a downstream loss coefficient is estimated the 

local downstream water-level can be derived, but this has no practical 

importance. 
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Which condition - the supercritical or the subcritical one - will exist 

is found from a further analysis of the flow downstream of the bridge. 

w 
	

C w  
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d2 

do> dc 
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	 d2 >dc  

d1 > dcl 

d2>dc 

> dc 	 d1 = dcl 
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d:dj 	 T 
j d,<dc 	 d2<dcl i . d2<d 

[LE VAT 10 N 

Note: 	S 	= w/W = blockage ratio 

w 	= total pier width 

W 	= gross channel width 

d 	= upstream depth 

d 1 	= depth within pier section 

d 2 	= downstream depth 

d 	= critical depth within the unobstructed 

channel section 

d 1 	= critical depth within the pier section 

d. 	= initial depth 

Figure 92 Water levels for the three flow regimes, A, B and C 



135 

C Super-critical flow condition. 

At high river velocities the water level just upstream of the bridge as 

it is found for type B flow is not sufficient to evoke a hydraulic jump 

(upstream of the bridge) and the flow under the bridge remains thus also 

supercritical. All water levels are now fully determined by the upstream 

conditions and the upstream water level d 0  equals now the initial water 

level d.. Regime C, which occurs at mountain rivers, is not of interest 

for backwater effects; its interest is mainly in forces exerted by the 

flow on the piers and the maximum water level under the bridge. 

In table 4.6.1 the properties and needed calculations for each of the flow 

regimes are summarized. 

name per 
definition 

influence 
initial depth 

needed 
calculations 

A 	Subcritical d 1  > d 1  d 2 	= d. d 	= f (q, S, d 2 ) 

B 	Modular d 1 	= d 1  no influence d 	= £ (q, S) 
(critical) 

C 	Supercritical d 1 	< d 1  d 0 	= d. d 2  = f (q, S, d 0 ) 

Table 4.6.1: Properties of flow regimes A, B and C 

Figure 93, from WES [43], shows the limits of type A, B and C flow regimes 

as function of the initial conditions and the blockage ratio. 

Curve 1 is obtained by taking the critical depth in the section between the 

piers and its corresponding energy head, from which the (equal) water 

levels up- and downstream at the wider sectons are derived (subcriticai 

condition without additional losses). The calculated water level applies 

to the downstream limiting condition between modular flow and submerged 

flow. Curve 2, now including hydraulic losses, follows from interpretation 

of experiments; at the same critical flow condition between the piers the 

downstream energy head and corresponding water level (which equals at the 

limiting condition also the initial water level) is lower when losses are 

involved. Curve 1 represents the subcritical depth upstream of the bridge 

at modular flow. This depth is also the available sequent depth of a 

hydraulic jump which can occur for supercritical flow in the upstream 

region. From this depth the sequent supercritical flow conditions can be 

derived, which results in curve 3. 



136 

In the following the three flow regimes will be considered in more 

detail in the sequence C, B and A. For definitions see Figure 92. The 

discharge per unit width, q, is defined in the initial situation without 

bridge piers. 

Flow type C (supercritical flow): No further experimental data are 

available; WES advises to get insight in the flow behaviour by application 

of the momentum equation. In Figure 94 a computation result for the water 

level under the bridge is presented. The assumption was a constant energy 

level without additional losses. However, this computation is on the unsafe 

side so a factor a for flow contraction must be applied. It shows clearly 

that an important set-up of the water level can be expected. The graph has 

been obtained by application of the Bernoulli equation: 

d0  + q 2 /2g d 0 2 = d 1  + {q/(1-aS) 12/2g  d 1 2 	 (81) 

(d0  and d 1  refer to the water depth upstream and between the piers) 

In the figure d applies to critical depth at the section without the 

bridge piers. Between the piers the discharge per unit width is higher than 

upstream of the bridge 

q 1  = q/(1-aS) 
	

(82) 

Type B (modular flow): Figure 95 presents the upstream water level for two 

nose shapes of a bridge pier. Contrary to subcritical flow where pier 

losses are determined by the nose and the afterbody shape, only the con-

traction induced by the nose shape will determine the flow section at 

modular flow. 

Type A flow (fully-submerged and intermediate flow): the bridge pier losses 

for low flow-velocities (due to the near-horizontal water level) are fully 

comparable with the bar-losses at trashracks presented in the former 

section. But at higher velocities a dip in the water level occurs, giving 

an increase of losses. The higher velocity is expressed in terms of an 

increased Froude number, a decreased relative water depth d/d or an 

increased relative velocity head V 2 /2gd. (These numbers have in fact all 

three the same significance, for instance F 2  = (did)3.) 

For increasing velocity, the dip in the water level initially increases in 

proportion to the velocity squared, but when the dip increases the velocity 
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in the contraction increases more rapidly due to the additional effect of a 

decrease in water depth. 

Two formula for bridge pier resistance are discussed below, the Rehbock 

formula and the Yarnell formula (applied in the WES charts [43]).  To have a 

basis for comparison some uniform parameters are introduced in both 

formula. 

Rehbock (taken from Reh [29]) developed the following formula: 

Cb V/2g 
	

(83) 

C 	= [S - S(6 - 1fl (0.4 S + S 2  + 9 S 4 )(1 + F) 	(84) 
br 	0 	0 

= factor depending on the shape of the pier, S = blockage ratio = w/W, 

F 2  = Froude number downstream = V 2/I). The downstream Froude number is 

also the Froude number for the initial condition. It is seen that Rehbock 

took into account interaction between blockage and pier shape (the product 

terms with 8 and S) but in his expression the amplification due to the 

Froude numbers is the same for all bridge pier types. This indicates that 

he tested the piers at relatively low velocities (near the modular flow 

conditions it is mainly the flow contraction at the pier nose which is 

important and not the total pier shape). 

To enable comparison with other formulae for bridge pier losses Eqs. 83 and 

84 are transformed. 

Making use of the fact that the drag coefficient of one single bridge pier 

equals (this will be discussed hereunder) 

Cd = Cb/S 	 (85) 

the drag coefficient (derived from Equation 84) at low flow velocity 

F 2 
2 « 1 and zero blockage (S = 0) becomes: 

C do = 0.4 S 0 	
(86) 

and Equation 84 transforms into 

Cb= (Cd O_ CdS + 0.4 S)(S + 2.5 S 2  + 22.5 S)(1 + F 2 2 ) 	 ( 87) 
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Remark: 

Equation 85 is not formally derived here but when the drag of a pier is 

defined as 

D = Cd LL p V wd 0 	 (a) 

and when the momentum equation is applied at a condition where there 

are small velocities and a small head differences it can be found that 

the pier drag is just compensated by the force induced by the 

difference in water level 

D = Ah (pg wd 0 ) 	 (b) 

And also can be found 

Ah 	AH 	 (c) 

Now equation (b) in combination with (c) and (83) results, taking into 

account that V 2 	Vo l in: 

D = C 	(V 2 /2g) (pg wd0) = C b ½ p V wd 0 	(d) 
br 	0 

Equation a and d combined result in eq. 85. 

In Figure 96 the Cd  of a number of piers as investigated by Rehbock is 

presented. Although not all sizes are explicitly mentioned the drawing is 

undistorted and all piers unless indicated otherwise, have a length of 6 to 

6.7 times w (probably 6.66). 

%.ÏES [43] proposes for Cb  in eq. 83 the use of the Yarnell formula: 

C br = (d 0 	2 
- d )/(V2 	2 2 /2g) = 2K[K + 10(V 2 /2g d 

2 
 ) - 0.6)(S + 15 S 4 ) 	( 88) 

The factor 1< can be transformed, using Eq. 85, into Cdo  (V = 0 and S = 0) 

C do = 2 1<2 - 1.2 1< 	 (89) 

from which: 

1< = 0.3 + (0.09 + 0.5 C do 
) 0.5 	 (90) 
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The proposed Yarnell K factors are transformed in the next table into Cdo 

and compared with the Rehbock values of corresponding shapes. Especially 

for case a (the semicircular nose and tail), a great difference is seen. 

Pier shape K derived Cd from Fig. 	96 

Semicircular nose and tail 0.90 0.54 0.84 
Twin-cylinder piers with 0.95 0.67 
connecting diaphragm 
Twin-cylinder piers without 1.05 0.95 
d iaphragm 
90 deg. 	triangular nose and 1.05 0.95 1.15 
tail 
Square nose and tail 1.25 1.63 1.56 

Table 4.6.2: The Yarnell K factors, the derived C 
do 
 factors therefrom and 

corresponding values from Rehbock 

The Yarnell formula is presented graphically in Figure 97. Figure 98 gives 

a comparison with Rehbock results for shapes a, d and e (as indicated in 

Table 4.6.1) for varying d 2 /d values. 

The differences are probably due to the fact that the Rehbock formula is 

here applied in the range beyond the experimental range from which It was 

derived. Very small S values were probably not tested either, nor were the 

very large d 2 /d values (to prevent too low values of the Reynolds number). 

It is interesting that the best agreement is found for d 2 /d in the range 

of 3 and for the square-nosed and -tailed piers. 

In recent years an investigation of Al-Nassri and McBean [3] has been pu-

blished which covers a variety of shorter pier shapes. The range of F 2  was 

between 0.25 and 0.6 the blockage varied between 12 and 35%. Figure 99 

shows the test resuits. Instead of water depths the energy levels H with 

respect to the bottom level were used. 

A direct comparison with the Yarnell formula is difficult because the two 

presentations are quite different; therefore only a comparison with the 

Rehbock formula is presented. Shape 1 and 5 of Figure 96 was compared with 

b and a of Figure 99; the comparison is presented in Figure 100. In general 

the Rehbock formula gives higher water level differences (where the Al-

Nassri resistance is higher the diamond pier was also shorter and hence 

less streamlined). 
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