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Preface

This report "Discharge Relations of Hydraulic Structures and Head Losses from
Different Components" is conceived as part III of the future IAHR manual about
discharge relations and losses in general. Part I, which is presented by

Dr. D. Miller will deal with losses in internal flow systems, and part II
(Dr. W.M. Hager) will deal with the design of discharge measuring structures.
The content of this part of the manual is purely based on literature. It is
providing designers both background information and easily applicable data.
There are much data on discharge relations available and so the selection of
topics and literature was one of the problems the author had to cope with and
sometimes arbitrary decisions had to be taken. The problem was also the non-
uniformity of symbols, and matters would have been easier when not at some
time the water level and at another time the energy level had been introduced
as a reference for the hydraulic condition. It was considered to be unprac-
tical to redesign all figures, but for all the figures the meaning of the

applied symbols is given.

It was inevitable that once again use was made of the design manuals of the
Vickburg Waterways Experiment Station of the US Army and the US Bureau of
Reclamation, the data of which are used worldwide because of their concise and
user-friendly presentation. When presented here, however, all results were
transormed into a dimensionless form. I could also make use of the open-
channel-flow textbook by prof. E. Naudascher which fortunately had just been
published.

This part III is certainly not sufficiently complete, to cover all the needs
for design, but while also being a general introduction, a certain conciseness
was aimed at. Only after a certain period of use and after receiving comments
from users gaps may be filled.

I got help from a few colleagues of DELFT HYDRAULICS and RIJKSWATERSTAAT who
corrected initial errors and indicated omissions. In particular I wish to
thank prof. J. Battjes of Delft University of Technology for his close reading
of the equations, symbols and text of the first draft, and prof. P. Novak of
New Castle University for his corrections and proposed additions.
RIJKSWATERSTAAT financed, within the framework of the Hydraulic Structures
Research (BSW-CW), the final editing of this report. This edition has been
published in a limited number of copies, as a DELFT HYDRAULICS' report Q953.

December 1989
P.A. Kolkman



CONTENTS

List of Symbols

1. GENERAL ASPECTS OF DISCHARGE RELATIONS AND LOSSES ..........00n0u:0.- 1

Lol TREFOHOCTION « waimivnive i sanivereion o0 wralane i e @elaiklans s ste anal oie SRiE 5 ¢ 1

1.2 Discharge relations of hydraulic structures introduced in far-

Eield. ComPiEATEORE waeie ir viosnsminie sersimeime i wimeim e S SRR 8 6
1.3 The use of the Bernoulli-, the momentum- and the Carnot equations 8
1.4 Some general remarks before starting the calculation of losses 10
1.5 Modular flow equations .......iuiuienenerteonenerennanesenenannsna 10
Fi 5 FGTTY SUDMETREd FIOW s ss wamamisis o Siinie oo st ols SRGSEA 2008 T .
1.7 The intermediate-flow relations at control sections ........... 19
1.8 Remarks about enErance LOSSEE e v semsnies oo emiss o s ese s sems 23
1.9 Remarks about trash-rack and bridge pier losses .......ccvuuuun 25
1.10 Required and obtainable accuracies .......ccieineeenenenenannns 27

2. NUMERICAL PROCEDURE FOR COMPUTATION OF WATER LEVEL/DISCHARGE

BEEATIONS: oisa o wavaainn i Sd0emin i @enw'ss o Sewsin oa ydaewes weedees i ne 29
Ze [ THEEGANBETON. i cmeersms s Sameron i W 626 Sadssmbsy s ns s 29
2.2 The sedrch ProcedMEe « cawaisin waleuies o swadeds o sameseen s o diersn o e 31

Appendix of Chapter 2: Iterative search procedure for h2 using the

ACORN-BBC computer.

3. DISCHARGE RELATIONS FOR CONTROL SECTIONS ..........0vvneernnnnncnnns 36
3.1 'The sharp-crested Welr . cewwva sasmema i siseie: saamas s vatdeia i 36
3.2 The weir with circular crest mecbion < iidsies s vs ek es i Gaees i 42
3.3 The nappe—shaped OVerflow WELL .. vae s we cwsseine so s s se swwis sws 46

A modular’ FLOW. winammn va sawmei o SEee e SRR S e W e e 47
B submerRed. FlOoWiesies o wnsieint ns 6888 58 5w aesed 50 sasae b e s 48
C modulat £1oW WIth PLEEE vy wn swmemis vaemvms &8 s 655 ey 49
3.4 The nappe-shaped spillway with gate .........ciiiivennrennnnrnn 54
Broadcrested weirs and dikes ......icoiiivnnrennnnsrinccncnnrennns 56

3.6 ThHe morning glory SPITIWNAY wwww ws s owamiaiion e saiemeess e e 62



CONTENTS (continued)

327 Liabyrinth weldr: suwen v i@y o Sekeiesi is soed ol oW Bes ofv o s@sssse 69
3-8 Gates With UNdETELOW . voww cimm ow vmmeieime s saisssie e e siawisine s e 73
3:19 Gates With oVerflow .ucewaven s s &% saaaizes & SR e e ueEey 86
3.10 Gates with combined under- and overflow ...........cviuvunncnn 90
3. bl The Howell BUREETE WALWVE cwaviwwmn o o mmmwmn wim sun eisisiinme €78 vk ne s s 92
3 12 Condadt outlelr suwim s ovevems s us odaie v v i o s SRTes a8 S 96
LOSSES OF COMPONENTS UP- AND DOWNSTREAM OF THE CONTROL SECTION ..... 97
4.1 DOrifice and. intalte 1OSSES ishesi s isvemes o5 wemes o &8 8 ameim o s 56 97
4,2 TFriction TOSEEE swmms 5 5w e w5 e Siame oF seeoeneiis we sere s &8 sw 105
L33 Blets cmaoass oy veere oh S9eEig o5 Pl S &8 vRREEan o6 Seeiehg i v 109
4.4 Exit losses and hydraulic jump relations ........cociiivnenennn 112
A abrupt expansions downstream of control section............. 114

B hydraulic jump relations (two-dimensional)............ooeuunn 116

C hydraulic Jomp G0 & S1O0DE. oo cs v wesmaen be Seian is cnsniss oe s 120

D gradual eXpanSIionS. . ee seaeess o casaaims v sameens oesaeee s v 122

E hydraulic jump in a gradual expansion............ciuiuiiiunnn.n 125

8 Trash Tacks .6 is e med o be weesmns be Geees o Gasvavh vl Sasanee v s 127
+6 Registance of PTIdpe PLELE . ommeims mosasimens swmiense s siamseime s s 132

REFERENCES



LIST OF SYMBOLS

. wm
~

o el - w0 0 N ~ ~~ O W

o

%]

Oom m m D @l H R D O A A AR A A A A A O N
A0 O —

1]

(gate) opening height

parts of the nappe at weir flow

culvert area

orrifice area

loss coefficient by bridge piers

contraction coefficient

discharge coefficient

drag coefficient of bar or pier at internal flow or

at free flow with low velocities, without blockage effect
friction factor

discharge coefficient at free flow (used also as a reference
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gate thickness, diameter of semi-circular gate edge, waterdepth
jet thickness
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waterdepth in or just downstream of control section
waterdepth upstream of hydraulic jump

downstream waterdepth

critical depth = (q?/g)/?

waterdepth in culvert

waterdepth at submerged supercritical flow

pipe diameter, height of roofed culvert

hydraulic diameter (4 x hydraulic radius)

Froude number V/Vgh (F2 refers to section 2 etc)

Froude number upstream of hydraulic jump

acceleration of gravity

height of gate opening

upstream water level related to crest level at modular flow
upstream head related to weir crest or culvert bottom
downstream head in or just downstream of control section
downstream head further downstream

upstream energy head (above weir crest) at modular flow
upstream energy head above weir crest or culvert bottom
energy head in culvert

crest-design value of upstream energy head

(effective) energy head upstream of a weir

(m)
(m)
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K coefficient in the bridge-resistance formula of Yarnell
Ks loss coefficient of slots
Ka abutment coefficient
Kp pier flow-contraction coefficient
L length of crest in flow direction (m)
L bruto length of labyrinth weir (m)
; 4 lip length of gate (m)
L length of hydraulic jump (m)
” length of radial jump (m)
ml, m., discharge coefficients
p weir height (m)
P pressure (Pa)
Pa atmospheric pressure (Pa)
q discharge per unit width (m2s-1)
Q discharge (m3s 1)
Qg gate discharge (m3s—1)
Ql real discharge over labyrinth weir (m3s—1)
Qn discharge at a sharp-crested straight weir (m3s=1)
QO discharge at modular flow (used as reference discharge) (m?s-1)
b ratio r2/rl
Iy T, radii up- and downstream of radial jump (m)
R bottom step (m)
Ry hydraulic radius (m)
S submergence factor (hlfho) or (htho)
S0 slope
U velocity of flow (m s=1)
U average pipe flow velocity (m s—1)
' flow velocity (m s—1)
Vc culvert velocity (m s=1)
VO orrifice velocity (m s-1)
w width of opening, weir, sluice, culvert or gate (m)
w repeating distance at labyrinth weir (m)
W bar thickness of trash rack (m)
W canal width (m)
W distance between trash rack bars (m)
We Weber number
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Y, ratio dzldl
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z coordinate in vertical direction (m)

o correction factor in the Bernoulli equation for uneven flow
distribution

a divergence angle at one side of diffusor (degrees)

B correction factor in the momentum equation for uneven flow
distribution

& boundary layer thickness (m)

8 displacement thickness of boundary layer (m)

50 shape coefficient of bridge piers in Rehbock formula

AH loss of energy head (m)
wall shear stress (kg m—1s—2)
divergence angle (= 2 a) (rad)

coefficient for loss of energy head
related to V2/2g or to (Vi- V2)2f2g
£ entrance loss coefficient etc.
p fluid density (kg m—2?)

rate of submergence of submerged hydraulic jump (= dsfdl)
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1. GENERAL ASPECTS OF DISCHARGE RELATIONS AND LOSSES

1.1 Introduction

Hydraulic losses are among the classic research topics in laboratories for
hydraulic research, and a continuous flow of publications has been the
result.

In contrast to publications about internal flow, only a limited number of
publications about losses and discharge relations of free surface flow
structures are of more general value. Because at free surface flow many
more parameters (compared to internal flow) are involved, the chance is
small that exactly similar conditions occur as compared to data from

literature.

Because internal flow is discussed in Part I of the IAHR manual, in the
following only data and computation methods are presented which are related
to free surface flow. The application of scale models is not further

discussed.

The data of this manual will mainly be used for estimating in the pre-
design stage the dimensions of a structure through which a certain
discharge should pass at a given combination of up- and downstream water
levels (or difference of water levels).

Another use of these data can be the introduction of structures such as
sluices, weirs, and so on in far-field computational models of canal
networks and estuaries. Then it is important to have insight into the
nature of the discharge relations with all sorts of combinations of the

upstream and downstream water levels.

The following type of equation is called a "discharge relation":

Q = f(hy, h,, geometry) (la)

in which Q = discharge, h, = upstream water level, and h2 = downstream

0
water level (in general at a distance where the flow is redistributed over
the flow section).

Instead of water levels, also the energy heads can be applied.

Q = f(HO, H,, geometry) (1b)

2?
When in a structure one section controls either in total or mainly the
discharge relation, then this is called a "control section". In Chapter 3

the discharge relations of control sections are presented.
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When the structure has a certain length (in flow direction) the "hydraulic
losses from different components" are also involved, such as entrance- and
exit-losses, friction losses, losses at a hydraulic jump etc.

A number of these losses are expressed in terms of losses of energy head.

As and example the entrance loss:

= 2
AH =€ Vi/2 (2a)
where:

ﬁHe = loss of energy head at the entrance,

Eo = entrance loss coefficient,

= culvert velocity and

= acceleration of gravity.
At a free-surface condition this equation becomes:
= 2
AH_ = E_ (Q/w_d_)?/2 (2b)
(wc = culvert width, dc = water depth in the culvert).

This relation differs markedly from Equation 1, and in equation 2b the
depth dc is coupled to both the up- and the downstream head. The following
procedure is suitable to determine the discharge relation of the structure.
The discharge relation of a control section, mostly expressed in the form

of Equation (1), is transformed into:

(hl is the head just downstream of the control section and h6 is the water

level just upstream of this section).

Now to hé is added the effect of the different losses from elements
upstream and from hl is substracted the effect of the downstream losses
which results in h2' (All these additional losses are found from
expressions similar to equation 2b but then transformed into steps in water
level).

When these calculations are performed for a sufficient number of
combinations of Q, hD and hl then a new discharge relation of the type of

Equation 1l can be established.
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In this manual data are presented about discharge relations of control
sections and about losses of components. Discharge relations of complete
hydraulic structure are not presented here as these can only be considered
as a special case. In certain cases the discharge relations of the control
section might be representative for the whole structure. This applies when
the flow at the control section is strongly throttled (discharge over

weirs, over and under gates etc.).

Concerning the discharge characteristics of a control section with free
surface flow, there is already a great complexity: three flow regimes are
distinguished. Later this wil be illustrated in Figures 3 and 4, in which

configurations with openings and overtopping are introduced.

a. free flow (or modular flow), where the discharge is related to the

upstream head only; Q = f(ho). Because the upstream energy head HO

(being (h0 + V5f2g)) is related to h, and Q, also Q = f(HO) is a unique

0
relation. In the design it is of interest to know how low the

downstream water level must be to guarantee modular flow.

b. fully submerged flow, here "fully" means with small head differences.

Fully submerged flow is comparable with internal flow because the

nearly horizontal water level is a boundary which remains independent

of the flow velocity (as long as this velocity is small), so the loss
and the discharge relation are also AH = £V?/2g, and Q = CdA JEEEE,
with the loss coefficient £ and the discharge coefficient Cd being
independent of AH. AH is the loss of energy head from up- to downstream
of the control section. When the flow is overtopping a sill or a gate,

then the flow section "A" depends on the water level.

c. intermediate flow, in between the two former regimes; this is the most

complicated one; the discharge depends on both energy levels HO and Hl
(or on both heads h0

called submerged weir flow, wherein AH determines the discharge but

and hl). It comprises the situation of what is

where the flow section is mainly determined by the downstream level
instead of the upstream level (like Figure 4b). It comprises also the
situation of semi-submerged gate outflow with an eddy on top of the jet
(with thickness d.) with super-critical flow (Froude number > | or

v > JE_E;). And as will shown in section 1.7 (Figure 5) there can also
be mixed flow, where the upper part of the weir flow behaves like free

flow and the lower part like submerged flow.
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The transition between the free flow and fully submerged regimes and the

intermediate regime cannot precisely be predicted.

In Figure 1, a picture is shown of the generalized discharge/water-level
relation, where the three flow regimes are presented. Such a presentation
is valid for the control section, but can also be drawn up for the complete

structure.

ipter™ }a:: \
l{r{o"‘ egl™ modular flow
- Hy=3
log Q \ Q = f(HO)
: Hy=2
B \ H,=1

b
\ \overflow
\ underflow

EEm—— log A H

Figure 1| Generalized discharge/water-level relation for one geometry (and

also one gate position).

In case the complete structure is considered, the characteristic property
of the fully submerged flow regime remains that discharge Q increases in
proportion to the square root of the head difference. At overflow the
control opening and the discharge vary also with the waterlevel ho.

The characteristic property of the free (or modular) flow is again that (at
a given upstream water level hO) the discharge Q is completely independent
of the head difference. The relation with the upstream water level can be
in proportion with H3/ 2 (overflow) but also with H% (underflow or a
horizontal slit halfway) or a combination of both.

At intermediate flow the characteristics of the total structure are more
variable than the one of the control section.

When the head difference increases, a dip is seen in the water level just
downstream of the control section. This is related to the recovery of
potential energy further downstream. So the head difference over the

control section is greater than the global head difference.
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Therefore, if the flow opening remains constant, the discharge increases
more than proportional with the square root of the head difference. This

for instance is observed in Figure 42.

At overflow the flow section decreases with a lower downstream water level
and this effect will generally be stronger than the effect of the increased

head difference as was mentioned above.

The intermediate flow regime can also show a mixed flow condition at a
number of openings, where some of them have modular flow and some submerged

flow.

Figure 1 applies to one geometry only: at a structure with a gate such a
set of curves should be set up for each gate position. Generally, this is
not done but the result is that simplified presentations show scattered

data!

Results of computation of losses in free-surface flow at hydraulic
structures are less precise than those for internal flow. The number of
parameters requires schematizations and often a scale model is used for
final calibration.

Computations serve mainly for dimensioning the structure in the pre-design
stage. When the structure is meant for discharge metering it has to be
specially designed for that purpose (standard design weir), or the
structure must have a reference section with a good flow distribution,
where the discharge is calibrated with measurements of velocities at
different points. With an accoustic discharge meter the flow distribution
can be uneven and, depending on the type of equipment, streamlines need not

be parralel.

In Section 2 is introduced a computer algorithm which can be used to handle
the type of equations for free surface flow in the intermediate flow
regime. For free or fully-submerged flow, data can be used which are
presented in part II and part I in this manual (measuring weirs and
internal flow respectively). Left out are special situations with, for
instance, mixed air/water flow, and the transition of roofed culvert parts

with submerged and with free flow.
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1.2 Discharge relations of hydraulic structures introduced in far-field
computations

In one-dimensional far-field computational models (networks), and in two-
dimensional tidal and flow models, the discharge relation of structures,
dikes, and so on needs to be represented.

Suppose that the type of curves of Figure |l are determined either from
scale-model measurements or from computations. In both cases there is some
difficulty in incorporating the results in network or in tidal computation

schemes. The nature of the curves is for each upper water level:
If Ah (or AH) > P, with P = f(ho) then modular flow: Q = fl(ho) (or f(HO))
If Ah < R, with R = f(ho) then submerged flow: Q = f2(h0> v2gAh

In dynamic networks or tidal computations one prefers to use discharge
relations for a barrier or a closure gap, which can be differentiated
continuously. Expressions with "if" statements (Boolean variables) are less
suitable. The discharge relation can be replaced by an empirical expression

approaching reality in a limited range of hydraulic conditions.

The following type of expression might be suitable to represent the
complete weir flow-discharge relations (which at their turn are obtained by

empiry or by computation) in a versatile way:

1 ) 1 -1/n
{£,(hy) Y2gsR}"  {£,(h}"

(3)

f2 is representative for the fully submerged flow condition (where Ah is

small) and fl for the modular flow.

In this expression fl, f2 and n can still be functions of hO or Ah.
It can be seen that, for one hG value, the left term dominates when Ah is
small and the right one dominates when Ah is great, so similar lines as in
Figure 1 are obtained.

The power n is introduced to describe the curvature between the modular
flow and the submerged flow line in Figure 1. |

At gate underflow the intermediate flow does not show a simple sharp
transition between the submerged and modular flow regimes, for which a not-

too-small n must be chosen,but the relation Q = vAH which is valid for the
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fully submerged regime, gets steeper in the intermediate flow regime. So a

function as
Q = a VAH + BAH? + y AHD (with b > a > 0.5)

should replace the former relation Q ® vAh. The power n in Equation 3 must

be higher than a or b.

In two-dimensional far-field flow calculations the skew overflow over dikes
causes a modification in the direction of momentum. This is discussed by
Schénfeld [35]. When the dike is supposed to be smooth, the momentum in the
direction of the width (say "perpendicular to the flow") does not change.
The momentum in flow direction modifies according to what is found for two-
dimensional flow. Now the initial upstream velocity (to be used for
obtaining the energy head) must only be the velocity component in

longitudinal direction of the crest.
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1.3 The use of the Bernoulli-, the momentum- and the Carnot equations

For free-surface flow the Bernoulli- and momentum equations can be applied
in the same way as for internal flow. The Bernoulli equation applies only
when the flow converges (accelerates).

The momentum equation can be applied when the pressure distribution is
known. The momentum equation is then suited to calculate the losses in the
zone of decelerating flow. The application of the momentum equation is of
great value in all those cases where the flow profile is suddenly widening
and where in zone of the separated jet and the eddy on top or underneath

reigns a nearly hydrostatic pressure.

As for the momentum equation: for internal flow (pipe flow) it is common to
use the Carnot equation at abrupt expansions with cylindrical or
rectangular culverts. This equation, which is derived from the momentum
equation, is easier to handle than the momentum equation itself. With free-
surface flow, however, the Carnot equation only applies at low velocity
conditions where the water level is almost straight and parallel to the
bottom. Therefore, in general, with currents having free water surface the

momentum equation must be applied directly.

Most computations of pressures and losses are based on one-dimensional
considerations, where discharge is supposed to be evenly distributed over

the flow section.
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Figure 2 Correction coefficient a and B for a fully developed velocity
distribution as function of wall-friction factor; from

Naudascher [24]

But when the velocity profile is non-uniform the Bernoulli equation cannot
be applied automatically. The transport of energy, proportional to p V3,
must be expressed correctly in the energy balance.

A (sometimes necessary) refinement can be obtained when in the Bernoulli
equation a factor a is introduced into the ?;/23 term. The VA now refers to
the average velocity over the Section A. The a factor is always greater
than 1. A similar procedure is used in the momentum equation (a factor B
applies).

In Figure 2 a and B factors and their definitions are presented (from
Naudascher [24], but referring to the work of Rouse) for those conditions
where the velocity distribution is fully developed and adapted to the wall
friction Cg-

In a streamlined flow contraction of short length one should apply

¢ = B = 1 because the boundary layers have not yet developed and the flow

is still evenly distributed.
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1.4 Some general remarks before starting the calculation of losses

A.

In general an outlet work or a sluice must be approached as if they
were a chain of hydraulic losses. A dominant element is the discharge
relation of the control section. This control section is a sill for
instance, or an opening or a narrow flow section. First the discharge

relation of the control section must be found.

When first the modular flow is considered, then only the extra losses
at the upstream canal section play a role, resulting in an additional

rise of the upstream level.

There is a maximum downstream level (close to the control section)
where the modular flow is not affected. Naturally the corresponding
water level farther away depends on losses, change in flow section, and
so on. It is important to consider separately the water level just
downstream of the structure and the water level farther away where the

flow is distributed over the whole flow section.

Discharge-regulating structures are relatively short. The losses due to
the inlet, slots, shafts, and so on and, in fact, are therefore not
independent of each other. In computated these interactions are

neglected, and hence only a limited accuracy of computed results is
obtained. The importance of interaction effects at non-modular flow
increases when modular flow is nearly reached: diving jets and other

phenomena cause deviations from the one-dimensional flow.

For submerged flow or for the intermediate flow regime, first the
discharge/water-level relation should also be established for the
control section. Then the additional losses up- and downstream must be
added. The momentum equation can be applied just downstream of this
section, but only for abrupt expansions where sufficient information
about the pressure distribution is available. For other configurations

(scarcely available) empirical data have to be used.
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Complicating factors in the analysis can be points F and G:

F. There can exist conditions at which it is not clear where with modular
flow the control section is located. A flow contraction at a gate
recess can suddenly create a control section, and even situations where
several critical sections occur are possible. The trash-rack can create
such a flow contraction that at that location a control section will be

formed resulting in extremely high (and often unexpected) losses.

G. Near the modular flow condition hysteresis effects can occur; another
discharge is found depending on whether a certain downstream water
level is reached by raising or by lowering. With an overflow condition
starting at a low downstream level the free-falling jet dives and
causes a local dip in the downstream water level, which in turn results
in sustaining the modular flow condition with a diving jet. However,
starting at a high downstream water level the submerged jet does not
tend to dive and hence no local dip in the downstream water level

occurs.

The size of hydraulic.structures is large, so that the influence of the
water viscosity (Reynolds number) is negligible. This does not apply for

the scale-model results.
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1.5 Modular flow equations

Figure 3 shows examples of modular flow conditions and their discharge
equations. Approximate atmospheric pressure will reign in the whole flow
section of the vena contracta when sufficient side- and/or under-aeration
occurs. Reality is somewhat different but in the applied equations an
empirical coefficient will incorporate these deviations. Near-hydrostatic
pressure occurs in the vena contracta with two-dimensional flow above a
horizontal bottom or a long-crested sill.

In the case of the vertical partial slit the conditions of atmospheric

pressure and the (assumed) horizontal outflow in the vena contracta lead to

the following expression for the discharge relation (see Figure 3 case a)
Q=C.w (2/3)(V2g) {H}/? - (H - a)?*/?} (4)

and when the slit is elongated till the upstream water level (case b) this

equation transforms into
Q=Cw (2/3)(V2g) H;/2 (5)

Here the contraction coefficient is introduced as Cc' the slit width as w,
the slit height as a, while H0 presents the upstream energy head in

relation to the bottom of the slit.

In reality the contraction coefficient has to be replaced by a discharge

coefficient C, now also including the disturbing effects of vertical

d
velocity components of vertical contraction.

For the overflow nappe (Figure 3 case c) which is fully aerated, a similar
expression applies but although at the top and bottom atmospheric
conditions exist, the pressure inside of Section A-A will deviate, the
velocities will vary in direction and the effective flow section is
evidently less than the overflow height.

In this case the discharge coefficient C still related to Equation 5, is

d!
an empirical one and no relation is derived from an estimated contraction

coefficient.
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At the broad-crested weir or sill (symbols, see Figure 4b) streamlines are
straight and thus there is hydrostatic pressure. Application of the

Bernoulli equation for the broad-crested sill results in:

- v =
q h vV2g (H0 hl) (6a)
q gets maximal when hl = 2/3 HO’ and for modular flow one gets the equation
presented in Figure 3d:

qy = (2/3) Hy V/(2gH,/3) (6b)

(HO is again the upstream energy-head level above the sill level and 4 the
discharge of modular flow per unit width). The critical waterdepth dc above
the sill (being (2/3) HO) is the one where application of the Bernoulli

equation (see also Figure 4b) leads to the maximum discharge, which remains

when the downstream level is further lowered.

For flow under a gate with a contraction coefficient CC see Figure 3e) the

Bernoulli equation, also based on a hydrostatic pressure distribution,

results in a velocity proportional to v2g (H ), giving:

upstr P yownstr

q = C,a V2g(H, - C_a) (7)

(here a is the height of the opening under the gate)
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Pn-= atmospheric pressure

L.
Q =Ce¢ wf \V2g (Ho- z)dz =
0
L a/e 3/2
=Cewz\/2g {Ha —(Hp—a) }

ATMOSPHERIC PRESSURE OVER SECTION 1-2 (VERTICAL PARTIAL SLIT)

Pa = atmospheric pressure

a/e
Q ~Cew2/3\/28 Hg

Ce =1(Ho/p)

nearly atm.pressure and more or less
horizontal veloelty in A-A

2 a/2
q =Cq = 2g Ho

(similar to case b)

a = 1/3H,
b=2/3H, 9= 2/3 Ho\/zg(nu/a)'

(A—A= control section)

@ HYDROSTATIC PRFSSURE IN A—A (2 DIM.)

Figure 3 Modular flow conditions with atmospheric pressure and with

hydrostatic pressure in the control section
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A variant for the discharge relation under the gate can be derived directly

from Eq. 7 when instead of the upstream energy level H, the upstream water

0
level h0 is introduced as reference for the upstream condition.

q=C_.a ngho V1 + C.a/hy) (8)

Remark:
This can be proved as follows:
Equation 7 can be written as g2 = C;az 2g (h0 + (qﬁfh; 2g) - Cca)
. g2 — C232/h2) = (C232 .
or: q% (1 Cca Iho) Cca 2g ho 1 Ccafho) and after division of
both terms by (1 - Cca{ho) and taking the square root Equation 8 is

obtained.

It is important to establish the maximum water level downstream of the
control section for which no reduction of flow occurs. This downstream
water level is different for the case that at modular flow the control
section has a hydrostatic pressure distribution or that there is
atmospheric pressure over the whole section:

- ‘at atmospheric pressure any pressure higher than atmospheric pressure
reduces the discharge, therefore any water level above the crest or the
bottom has an effect.

- at hydrostatic pressure a downstream water level lower than the one at
the control section, has no effect on the discharge, so in the case of
Eq. 6 a downstream water level just downstream of the control section

lower than 2/3 HO’ gives no discharge reduction.
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1.6 Fully submerged flow

The "fully submerged" flow regime as it is indicated in Figure 1 is related
to the limit case of a (nearly) horizontal water level and very low
velocities (low Froude number). Because the flow boundaries are now fully
defined, the data of internal flow losses can be used when these are
available for similar geometries. The plane water level can be seen as a
flow boundary or as a line of symmetry of a mirrored situation, so still

more comparable situations might be found.
The losses at internal flow are expressed in terms of

AH = £ V2 /2g (9)
and this also applies for the fully submerged flow. The influence of AH on
the losses £ is negligible now. The total loss £ is built up by a series of

local losses (inlet, gate, outlet, friction). The final result can now be

transformed as follows:

AHtot - AHinlet * dHgate * &Hfriction * ﬂLHoutlet s (92

¥y 9b

AHtot - EE (Einlet * Egate * Efriction " Eoutlet B8] ob)
—0.58

vV ==¢t 2gAH (9c)

Q =C, A v2ghH (9d)

At overflow the flow section A varies with the water level. Due to a

variation in flow geometry £ and C, do not remain fully constant either.

d
The friction losses are calculated in a similar way as found for internal
flow. The Moody diagram, as is commonly used for internal flow in circular
pipes, can be used but the "hydraulic diameter" D, in this diagram has to
be replaced by the hydraulic radius Rh which is defined as the sectional
area divided by the wetted perimeter.

For a pipe with circular section this gives:

Rh = D/&4 (10)
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A problem with the calculation of the friction is that the structure is not
always long enough for getting the fully developed flow distribution, hence

friction can be smaller or larger.

At weir flow, starting with fully submerged flow and gradually lowering of
the downstream water level, the intermediate flow condition starts already
at relatively small head differences. This is observed especially at weir
flow (Figure 4b) where the flow section, being the water depth hl over the
crest, varies with the downstream head h2. As has been indicated before,
this condition is mentioned "submerged flow" (in contrast to modular flow
and also in contrast to fully submerged flow where the water level is

approximately horizontal).

An example of the loss coefficient of a sill in the fully submerged
condition is shown in Figure &4a. The water level being nearly horizontal
and the downstream face being vertical, the pressure distribution is a
hydrostatic one and thus the momentum equation can be applied. But because
of the water level being nearly horizontal also the Carnot equation can be
applied and this lead to an analytical expresson for the discharge q as

function of h, and AH. This can also be done for few under a gate,

0
Figure 4c.

The calculation for the losses is for the submerged condition, although
here the flow section varies with the downstream water level, quite

similarly as for the fully submerged condition.
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Bernoulli eq Momentum or Carnot eq. L H=loss of energy head

hzz hO and h.lzhD 4
25-‘5\*“={q¢’h1-‘4/(h2*9)¥ (Carnot)

q=h,\/28 H(h +p)/p

@ FULLY-SUBMERGED FLOW REGIME (small 4AH)

H
Bernoulli equation .

2
i) 2.2
hy+o,q '(hy +p)2g =hy+ &,q°/h,; 2g

(oty=1)
Momentum equation
INTERMEDIATE FLOW REGIME 2 2, 2 "
@ Lpe (b +p)¥+p, pa/h = L pa(h,+p)+Bp a7 (h,+p)
({31‘411
4
f — ’ e hlhhc and h,=hg 5
h | f .
l 9 ¥ (P2 2g AH =i' q.'cc"q,’he L (Carnot)
a Toa ' L |
1 £ y
A, I, I, q=Cea\/28AH/ (1-Ccasng)

@ FULLY-SUBMERGED FLOW REGIME

Bernoulli equation:

2 2 P2
h, ho+oa/ hy 28 =hy+0,q/Ca 28

(o¢y=1)

Y 2

Momentum equation :

@ INTERMEDIATE FLOW REGIME . i 3 . : .
- Pe n+P, PI/Ce = Z-pg P+ P, pa'/h,

Figure 4 Long-crested weir and gate flow under fully submerged condition

and in the intermediate flow regime
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1.7 The intermediate-flow relations at control sections

In the intermediate-flow conditions direct application of the Bernoulli

equation (from h0

a feasible result for the flow over a long sill (Figure 4b) and for flow

to hl) and the momentum equation (from hl to h2) leads to

under a gate (Figure 4d). But a discharge relation like Equation 1 cannot

1 the h2 can be found through
an iterative search or by solving a third-order equation. With the

be found directly. Starting with hO’ q and h

intermediate flow regime there are certain cases where mixed-flow can be
assumed. A part of the discharge is related to free flow and a part to
submerged flow. These cases are illustrated in Figure 5. When using these
mixed flow equations with constant Cc coefficients results may not be very
accurate but certainly useful for a first estimate of the discharge. The
procedure is fairly evident for the case of a half submerged narrow
vertical slit, where the horizontal flow contraction will not vary strongly
and where one can clearly distinguish a free-flow part and a submerged
part. At a nappe or at flow through a horizontal slit the pressure in the
control section is also nearly atmospheric but the (vertical) flow

contraction is more variable.

A usual way of expressing the weir flow discharge in the intermediate flow
regime is to start with the modular flow discharge QO and then apply a
reduction factor C_ which is a function of the dimensionless submergence

3]
factor S.

S = h2/h0 or hszO (11)

c (12)

o0
[

S QO
where QO is the discharge at modular flow.
Qg = £(Hy) (13)

By introducing a number of simplifications the reduction factor CS due to
submergence can be expressed analytically for both a short-crested and a

long-crested weir.
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top view
2
3
5 Ve e
Jwb\/28(s+a)
Q=Q,+ Q

2-dimensional situation

q,.= n-g—— \/28 Es-v—n)a/z-—as/ﬂ

T — q'b: bb's,.-"zg(s+a)

q=q,+ qy

s

- 2 3/2
9= .5 V28 (Hyb)

a
\
A= , b \,/2E(Ho—b}

qQ=q,+ qy

Figure 5 Vertical slit and horizontal nappe with mixed flow conditions
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A: Short-crested weir (Figure 5c):

9 is found from the equation shown in the figure when b = 0 is introduced:

qg = C4(2/3) (Y2g) H, */* (14)

Then we introduce for the fully submerged condition b = h2 (this is only
true when the sill is relatively high) and we assume for the discharge

coefficients Cda = Cdb = Cd

The height b in Figure 5c can be expressed as HOS’ and the discharge

relation of Figure 5c becomes:
g =q, +a.= € (2/3) (Y2g) (1-8)%/% Hy*/? + C;S HyV2g Hy (1-5)

So:
Cg = a/gy = (1-S)/2 + (3/2) sV1-s

or:
Cg = (1 + %s) V(I-5) (15)

This analytical expression was compared by Abou Seida and Quarashi [2] with

experiments, see Figure 6.

1.0 broad—crested weir, 2q(19)

0.8 L
)
]
0.6 b
0.4 L _
S T T S I T T
-’/////'/"/{'.////'/ g/;/////.
0.2 experimental points Abou Seida,/Quaraishi
0. X 8 = o .00
¥, 0 8 = 4560

| | | | 1 1 | | ]
0 0.1 0.2 03 04 05 06 07 08 09 1.0

—» S

Figure 6 Discharge reduction by submergence
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B: Broad-crested weir

Equation 6 was:

9y = (2/3) HO (V2g H0/3 (16)

When the weir height p is large compared to the overflow depth, then in the
situation of Figure 4b the water level above the crest gets equal to the

downstream water level. "Bernoulli" then results in:

q =h, V2g (H0 - h2)

and, introducing S = h,/H, = hz;’H0 one obtains:

270
. =
q S Hong Hy (1-8) (1)
(17) holds for S > 2/3, otherwise gq = 5 (18)

This results in:

CS =1 for S < 2/3 and
CS = (3/2) s¥3 (1-8) for 2/3 < S <1 (19)

Figure 6 shows the verification of Equation 15 with experiments on the
sharp-crested weir in vertical and in 30° inclined position, and with a
triangular sloping filling block at the upstream face on 45° and 60° (from

Abou-Seida and Quaraishi [2]).

Again, the above relations for the control section must be extended to the
water level further upstream and downstream for obtaining the discharge
relation for the whole structure. The extra losses upstream will not cause
problems but for calculation of the water level further downstream where
the flow diverges, one could try to apply the momentum equation. However,
when the downstream canal has diverging walls or when there is a sloping
bottom, not all the forces which need be introduced are known; this in
contrast to the sill with vertical back wall. What might be feasible, but
this is not sufficiently verified, is that the rise in water level (by
recovery of potential energy) with a certain slope (estimated to be some-

where in between 1:5 and 1:7) is used to introduce an extra horizontal
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force in the momentum equation. Assuming a hydrostatic pressure distribu-
tion, the longitudinal force component acting at the diverging walls or
sloping bottom can then be calculated; this force indeed gives a reduction
in energy head losses at diverging walls. This procedure has originally

been suggested by Kooman [21].

It can be seen that the calculations in the intermediate flow regime do not
contain new elements, but computations should be done carefully. The steps
or slopes in the water level do change the flow geometry so that the losses
cannot be found so easily from literature data. The proposed computer
program of Chapter 2 is suitable to handle the trial-and-error procedure

which is related to the water-level computations in the intermediate flow

regime.
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1.8 Remarks about entrance losses

At the entrance of a sluice or a culvert the pressure lowers due to the
velocity head VCZ/Zg (wherin VC is the culvert velocity). However, there is
the "normal" flow convergence which depends only on the culvert section,
and there is an extra contraction which depends on the mouth shape. The
extra contraction will disappear further downstream but the result is an

extra loss (similar to Carnot losses at a suddenly widened flow section).
Per definition:
- 2
H0 HC + Ee (VCXZg) (20)
or

2 = 2
h0 + V0/2g hc + (1 + Ee) Vc/2g (21)
hO and H0 are pressure head, respectively energy head upstream from the

culvert, and hc and Hc are related to the ones in the culvert Vc = culvert

velocity.
Ee is determined from pressure and discharge measurements.
o 2 = 2 -
€, = [(hy + V3/2 - b )/(V2/2)} - 1 (22)

In general it is assumed that the velocities are evenly distributed over
the culvert section.

However, it has been discussed in section 1.3 that in reality an a factor
should be introduced to take into account the uneven velocity distribution
(Figure 2). Because inlet losses of nicely shaped mouthes are small (in the
order of 0.15 to 0.3 in prototype and still smaller in model, see section
4.1) a few percent greater (Vé/Zg) will also result in a in reality smaller
Ee value (a few time 0.0l less).

In the total analysis of a structure the neglect of a is generally not
important, because at the outlet the extra kinetic energy which initially

is neglected is lost anyhow.

In par 4.1 the relation between the flow contraction coefficient CC and the

entrance loss Ee is discussed.
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In a closed culvert or at lower water velocities the condition is

comparable with a condition with a sudden flow expansion and hence "Carnot"

can be applied to the entrance losses.
Using the symbols of Figure 7,
AH v vV_)2/2 = z y2
= (V- V)2 = (C, - 1) VZ/2

and hence

tY  A.= culvert orea

ARRRNRN ANRNNANN AR, S
[ Ay | —— Vi Ac g
RN NN SN NN NN N AN
Vm = Vc !'Cc

entrance losses

Figure 7 Entrance conditions.

CC varies from about 0.55 (at a an all-sided sharp-edged entrance) till

(23)

about 0.85 for an elliptically shaped entrance, which should result in Ee

values from 0.03 to 0.67. The low values, however, are never reached in

reality (see Figure 65).
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1.9 Remarks about trash-rack and bridge-pier losses

Data about trash-racks found in literature refer to one-dimensional flow
without influence of the free water surface. But these data can also be
applied at lower water velocities with a nearly horizontal water level at
free surface flow. In other conditions these data give losses which are too
small. Even modular flow can occur in the flow contraction.

This is the reason why bridge-pier data are also related to the Froude
number VIJEE, where V is related to velocity and d to water depth of the

undisturbed condition.
There is a direct relation between the losses of trash-racks and the
hydrodynamic forces exerted on the bars. This relation follows from the
application of the momentum equation. When the rack is fully submerged then
the inflow momentum equals the outflow momentum and the momentum equation
results in:

p g AH = rack resistance force per unit area of the culvert (24)

(AH = loss of energy head, p = fluid density)

and when free surface flow is involved one can derive from the momentum

equation per unit width:

‘)"nghl2 + pqV, = Force + %pgh% + pav, (25)
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There are three types of approach to establish the trash-rack losses (see

Figure 8):

w/b = Lw/W
{t = trashrack loss coefficient
C, = flow contraction coefficient
Cp = force coefficient

A: ;H=(v:/zg) (W:—?Tﬁ -1 )2{Camot)

B: torce (per metnre)= Cr(]:'w/ ‘I);— F\Fua = pgiH
with Cp= 1 (bar—shape, and Lw/W)
2 2
e: ;H-E_‘vu/ag with § = f (bar—shape, and Lw/W)

Figure 8 Flow conditions at trash-rack and different types of approach for

C.

calculation of losses

Estimation of the flow contraction and establishment of the losses by
applying the momentum equation. The assumption is that in the whole
flow-contraction section an equal pressure exists. (For small blockage
ratios this does not need to be true!) Without any influence of the
free surface (in a culvert or at a horizontal free water surface) the
Carnot equation can be applied.

Estimating the drag coefficient of the bars and transferring the total
force into a hydraulic loss.

Using direct data of trashrack tests where losses are presented as

function of shape and density of the bars.

Mostly the third method is used, but it is advisable to apply also method A

so as to regard the consequences of extra blockage by trash and for

checking the possible effect of the modular or intermediate flow regimes.
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1.10 Required and obtainable accuracies

In ISO 1438, included in the ISO handbook [18] are discussed the accuracies
of discharge relations in prototype; the accuracy of hydraulic models are
discussed by Kolkman [20]. One of the conclusions is that accuracy
considerations must be set up separately for each specific case.

The possibility of systematic errors and scatter in model results must be
considered both. The definition of error can be related to the actual

discharge or to the maximum discharge.

Even when a scale-model investigation is considered, in the pre-design
stage it is important that a good estimate can already be made about the
discharge capacity of the structure. For this case it is important to know
how much one can rely upon data from literature.

The necessary accuracy is at the pre-design stage, say 5 to 15%; this
percentage is related to other inaccuracies of the design input (water
level, the once-in-a-hundred-years river discharge, etc.), and to

construction costs when for instance too-large gated openings are designed.

Especially in the United States a large number of investigations have been
carried out to establish systematic design data of free (modular) flow
constructions.

For these modular flow conditions it is certainly possible to obtain an
accuracy in discharge between 3 and 8% of the actual discharge. For
discharge sluices in tidal areas the intermediate flow regime occurs
frequently and here the accuracy of estimated losses is less (up to 20%
errors is the experience).

There are structures with a diffusor-shaped outlet resulting in a high
discharge capacity, but systematic data for the functioning of such

diffusors at free surface flow are missing.

When using the structure for water-discharge control the required accuracy
will be within 3 to 10% of the actual discharge. If a greater accuracy is
required than 10 to 15%, a specific scale-model study should be set up
and/or a seperate discharge meter has to be installed.

In certain cases the structure can be calibrated with the use of propeller
velocity meters, acoustic flow meters or with tracer methods. In these
circumstances the obtainable accuracy is variable and depends largely on
the measuring section, the accessibility, the number of measuring points,

the flow distribution and flow direction, turbulence and so on. When there
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is a straight canal or culvert in the structure an accuracy of 2% to 5% can
be reached. Again, a discussion about accuracy of measurements is found in
the ISO handbook [18].

When a high accuracy is required in discharge metering with the structure,
the design must be modified to that purpose. A scale-model investigation
must include an extended up- and downstream basin, the water levels must be
measured at points corresponding to the location in prototype, the scale
must be adequately chosen in relation to the wanted accuracy and a
correction procedure should be used to compensate for scale effects due to
friction. Structures with trash-racks need special research procedures. In
general a structure with a trash-rack is not well-suited for discharge

metering.

In the presentation of discharge coefficients following here, the influence
of the Reynolds' number (viscosity effects) is not included. For the
prototype structures this is of minor importance, and hence in the pre-
design of the structure it does not play any role. For the choice of the
scale factor in hydraulic modelling and for the interpretation of scale-
model results specialized knowledge is needed; this is beyond the scope of

this manual.
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2. NUMERICAL PROCEDURE FOR COMPUTATION OF WATER LEVEL/DISCHARGE RELATIONS

2.1 Introduction

N7 7/ /Y 2 TR

entrance gate exit

Figure 9 Water levels in a discharge sluice

In Figure 9 a sluice with free-surface flow is schematized throughout as a
chain of discontinuities for each of which an equation can be set up
relating water levels and discharge. In this schematisation no interactions
between the sections are introduced.

A is the inlet of the sluice. Sluice width is introduced as w. The inlet
loss coefficient is Ei. The relation between ho, hl and Q can be written

as:
hy + ag(Q/wghy)? /28 = h) + a) (1L + £)) (Q/w h)? /2g (26)

(w, is the width upstream of the sluice, w is the sluice width and El is

0
the entrance loss coefficient).

When the flow is supposed to be evenly distributed over the flow sections

the gate-discharge relation becomes:
hy + (thlw)2/23 = b, * (Qchaw)3/2g (27)

Here Cc is the flow contraction coefficient in opening a.
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When the computation starts from upstream, there is a certain Q which
cannot pass at the upstream water level which was introduced; one can now
for instance by trial and error find the modular flow discharge (h2 cannot
be smaller then the contracted jet Cca).

The gate loss is produced in the deceleration zone of the flow further
downstream of the gate. This loss can be computed using the momentum

equation, provided that Al (in Figure 9) is sufficiently large:
pPEW (0.5h23) + pQ’/(Ccaw) = pgw(0.5h32) + szf(hBW) (28)

The exit loss at B (a sudden widening) can also be determined with the
momentum equation, assuming that the water level in the basin near the

sluice is related to the water level h as follows:

3’
pEW (0.5h32) + szf(hBW) = pgw (O.Shaz) + anf(hAW) (29)

At a gradual widening an empirical relation between h3, h4 and Q has to be

introduced.

When a hydraulic jump downstream of the gate is involved one obtains:
pgw {0.5(C a)?} + pQ*/wC_ a = pgw (0.5hy?) + pQ?/(why) (30)

When refined calculations are needed, one can still introduce the a and B
factors of Figure 1.3, the friction of the culvert walls, a varying Cc
value of the gate opening, depending on gate position, and on the water
level hl' All these equations are coupled. It is common to solve each
equation separately, and the "next" water level (more up- or more
downstream) is found, mostly by trial and error, from the calculated energy

level.

Using a computer one can now solve these equations in a standardized way.

For each of the formulas we index the water level of the left-hand section
as hl and at the right hand as h2.
computation downstream of a gate, we define Cca as being hl for instance.

In the case of a hydraulic jump

Each of the formula which were discussed before can be written as follows:

f(hl’ h2’ Q) =0 (31)
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Starting the calculations from upstream with a given h0 an Q, the given
water level h0 serves as the hl of Eq. 31. When also the Q is introduced
then Equation 31 can be written as

f(h2) =0 (32)

For the search for this h2 standard procedures are available. In section
2.2 a procedure will be presented, written for the ACORN-BBC or the
Archimedes computer.

When Eq. 32 is solved for h this is the h, to be introduced in the second

z" 1
formula, and then the next h, can be found.

2
The iterative procedure for the determination of the modular flow
conditions is relatively easy as well; when the discharge is too high in
combination with the chosen upper-water level, then no value of h2 s
found. Hence the modular discharge is the maximum discharge which still can
pass.
But a direct way of computation is to set up the equation for modular flow
at the control section and do the same type of calculation in the upstream
direction. Downstream of the control section one proceeds in the normal
way.

In the search procedure for h, one has to define the h, range where the

2 2
search takes place. One limit of this range can be h2m1n

exactly zero because then certain terms of the equations tend to infinity).

near zero (not

The h can just be an arbitrarily large value of h,. Not an extremely

larg32$:Tue, because then the search steps generally éet large as well, and
two solutions (critical flow and supercritical flow) can be surpassed in
one step.

When one wants to find the subcritical flow, then the search for h2 has to
start at h2max and one goes downward; for the supercritical flow it is the

other way around, that is working upward from h2min'
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2.2 The search procedure

Equation (32) is transformed into
f(hz) = Z (33)

in which Z has to become about zero, with a wanted accuracy of e.
A simple but fool-proof procedure would be stepping through the h2 range
with steps Ah, thus obtaining Zl, 22 and so on.

When

<
(2, _,) 2, %0 (34)
the search is stopped, and the procedure starts again with hn—l and hn as
new limits of the search range. The Ah steps must be small enough for the
first search, because near the critical waterdepth the two solutions (sub-
and supercritial are near to each other). The simplest procedure is to stop

the iteration when:
£((h _, + h)/2) <ce (35)
The wanted h2 value is then

h, = (h

2 + hn)/2 (36)

n-1

In the appendix to this chapter a much faster procedure is used, based upon

)

*
the Newton-Raphson method . At an arbitrary begin-value of h, the

2
derivative is computed

dZ/dhz = AZ/ﬁhz (37)

(Ah2 has been chosen as 1/2000 for the h, search interval)

2

When from this begin-value of h2, with its corresponding Z value the

tangent line is considered, the Z = 0 corresponds with a new h2 value.

* At a suggestion from H.K.T. Kuijper, Delft University of Technology.
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It is checked whether

[Z = f(h )l < wanted accuracy

2-new

When |Z| is still too large, h replaces the value of h, and the

2-new 2

procedure is repeated.

This procedure is incorporated in a new-defined function, FNfast-implicit'

with the following variables:

M = the number out of a series of self-defined functions of the type

f£(h;, h,, Q) = 0 (like Eg. 31).
h1 (defined as in Eg. 31).
Beginwh2
these values determine the search range of h2
End-h

2
Q (discharge, see Eg. 31)

This procedure is fully adequate to solve h2 from the Bernoulli or the
momentum equation, but when using other types of equations, this procedure

can evoke problems.
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APPENDIX of CHAPTER 2 page 1

the following way:

is found and with a high value the subcritical one.

The momentum equation is as follows:

The input in the form of a program is as follows:

REHMEMBER program starts here.
PRINT'"OUTPRINT"
hi=1: q=15: £=9.81: rho=1000

DEFFNselfdefined _1(h1,h2,q)

=Z

OUTPRINT
begin_h2= 40 end_h2= 1E-2 h2= 6.29128557

3

Other begin and end values of h2 result in:
b ]

OUTPRINT

begin_h2= 1E-2 end_h2= 40 h2= 0.999999999
k]

OQUTPRINT

begin h2= 10 end h2= 40 h2= -992.99

computer.

With the ACORN _BBC computer the following function "FNfast _implicit"

has been developed which produces the waterlevel h2 when one introduces
the discharge Q, the waterlevel hl and the self defined relation

Fihl, h2, Q)= 0. The h2 value is found when the function is called for in

h2= FNfast_implicit(M, hi, begin_h2, end_h2, Q)
The number M is the number of a series of self-defined functions which is
referred to. The begin_h2 and end_h2 values define the range in which h2
has to be found. With a low value of begin_h2 the supercritical sclution

As an example the sequent depth of a hydraulic jump is produced.

.5'rho*g*(h1*2)+ rho*{g*2)/hi= .5%rho’*g”"(h2"2)+ rtho*(g"2)/h2
This equation is transformed, putting all terms in the left hand:

S'rho"g*" (h1*2)+ rho*(q*2)/h1- .5'rho’g'(h2"2)- rho'(gq"2)/h2= Z
and Z has to be zero!

begin_h2=40: REM this means that the subcritical solution is found.
end h2= .01: REM the small begin_h2 or end_h2 should be greater than zero

h2= "1 h2

M=1: REM this means that the first self-defined function is used.
h2= FNfast implicit(M, hi, begin_h2, end_h2, q)

PRINT"begin_h2= "; hegin_h2; " end_h2= "; end_h2; "

END

REMARK in the following function the momentum equation is represented.

Z= .S'rho'g'(h1"2)s rho?(q*2)/hi- .5'rho*g*(h2"2)- rho*(q*2)/h2

Appendix of Chapter 2: Iterative search procedure for h2 using the ACORN-BBC

Appendix of Chapter 2: Iterative search procedure for h

computer.

2

using the ACORN-BBC
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APPENDIX of CHAPTER 2 page 2
REMARK the following contains the essential additional functions

DEFFNfast_implicit(MZ, hl,begin_hZ,end_h2,Q):REM*rrrrerrrrsasssrnzassanssnes
REM h2 has to be found
LOCAL endh2, beginh2, wanted precision, precision, steph2, P%, begini, endZ
LOCAL tangent_alpha, former_tangent_alpha
endh2= end_h2: beginh2= begin_h2
wanted_precision=ABS((end_h2-begin_h2)/5000)
P%=0: out_of_range=FALSE: stop=FALSE
REPEAT
PRA=P%+1
steph2=(endh2-beginh2) /2000
endh2= beginh2+steph2 2
h2=beginh2: beginZ=FNadditional(M%Z hi h2,Q
h2= endh2: endZ=FNadditiconal(M%, hl,h2,Q)
IF P%>=2 THEN former_tangent_alpha= tangent_alpha
tangent alpha=(endZ-beginZ)/(endh2- beginh2)
1F tangent alpha ¢»0 THEN trial_h2= beginh2- (beginZ/tangent_alpha)
1F P%»=2 AND tangent alpha*former_tangent_alpha¢=0 THEN out_of range=TRUE
IF (trial _h2-begin_h2)/(end_h2-begin_h2) 0 THEN out_of _range=TRUE
IF (trial_h2-begin_h2)/(end_h2-begin_h2)»1 THEN out_of range=TRUE
endh2=beginh2: beginh2= trial_h2
h2= trial_h2: Z= FNadditional(M%, h1,h2,0): precision=ABS(Z)
IF precision ¢= wanted_precision OR out_of range THEN stop= TRUE
UNTIL stop
IF out_of range THEN result=-99.99 ELSE result =trial_h2

- result."'OOl‘l't"t'l"'!l"l!llllll’l‘l’!llI'IIlll’lll’ll.ll"l"l"'!’l'lIt'l

DEF FNadditional (M% hil h2,0Q): LOCAL Z

IF M%=1 THEN Z= FNselfdefined 1(h1,h2,Q)

IF M%=2 THEN Z= FNselfdefined 2(hi,h2,Q)

IF M%=3 THEN Z= FNselfdefined_3(h1,h2,Q)

=7Z: REMARK indicates that Z is the output of the selfdefined function.

Appendix of Chapter 2; (continued).



37

3. DISCHARGE RELATIONS FOR CONTROL SECTIONS

Remark:

As noted before h is used for the water level and H for the energy head.
When only the upstream water level is involved then h and H refer to the
upstream conditions. Otherwise index 0 refers to the conditions upstream of
the control section, 1 to the conditions in or just downstream, 2 to the
condition further downstream. In U.S. reference like [38], [40] and [43],
He (the real or the effective energy head) is used in contrast to the
design head Hd which is a reference size whereupon the shape of a nappe-

shaped crest is based.

3.1 The sharp-crested weir

Discharge relations for modular flow and the submerged flow are discussed

separately.

A. Modular flow

Still in use and best-known is the weir-formula developed, and extensively
tested between 1925 and 1930 by Rehbock [30], at the of the Karlsruhe
University. The sharp-crested full-width weir has since then also been
widely applied as a measuring weir in laboratories. In Figure 10 a section
of the weir is presented. When installed precisely, obtainable accuracies
are within 1% [18]. The weir is sensitive to roughness of the upstream face
and at an imprecise installation 5 to 7% inaccuracies can occur (according
to Bos [7]). Therefore its application as a discharge measurement structure
in the field is less suitable.

The formula is based on a two-dimensional flow pattern and presents as:
-3
Q =w (1.78 + 0.24 * h/p) (h + 1.1 10 )3/2 (39)

The equation is not dimensionless, and the dimensions of the parameters
are: discharge Q is in m3®/s, the width w, the weir height p, and h are all

in metres; h is the upstream water level above the crest.

The flume width upstream of the weir equals the weir width w.
The correction of 1.1 mm in h caused some problems when it was tried to
transform Equation 39 into a dimensionless form. It certainly contains a

mixture of viscosity and surface-tension effects.
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For a measuring weir the crest shape has, according to ISO [18], to be

designed as indicated in Figure 10.

Special care is required for the upstream face to be vertical and smooth,

and to get a complete aeration under the nappe.

Sarginson [34] proposed to replace the value l.l mm by a factor
representing the influence of the surface tension (o) by the Weber number.

He defined this number We as:
We = pgh?/o (40)

After analyzing theoretically the possible effect of surface tension, he

proposes the following discharge formula:
Q = w(l.81 +.22 h/p +4.22/We) h'-.® (41)

Also this expression is not dimensionless.

The expression by Sarginson deviates up to 1.5 % from the Rehbock values.

Accepted by the ISO committee on water-flow measurements [18], are nowadays
the experimental results of Kinsvater and Carter [19]. They investigated
the discharge over a sharp-crested weir at different ratios between crest
width (w) and flume width (W). They proposed the following discharge

formula:
Q =, (2/3) (Y2g) wh, /2 (43)

This formula resulted from investigations for a wide range of W/w and h/p
ratios. Ce is presented in Figure 1ll. LR is defined as the effective breath
which equals (w + Kb); he is defined as the effective water-level height

remains 1 mm for all situations, the K

h
can be read in Figure 12. Again, the authors attribute the small Kh and Kb

being (h + Kh). The h correction K b

corrections to the viscosity and surface tension effects. The 1 mm
correction means that the total weir formula is not completely ccrrect in

dimensions (according to the theory of dimensional analysis).

The differences between the results of Kinsvater et al. and Rehbock, are
illustrated with the following results for w/W = 1. The conclusion is that,

applied in practice, they both produce the same result.
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Q % difference

Rehb. Kinsv

(m) (m) (m) (m3/s) (m2/s)

.05 A 2 .01045 .0104 + 0.5
| b 5 .0296 .0296 0

il b 5 .0857 . 0855 + 0.2
s .6 8 L1342 .1339 + 0.2

A correction factor for the discharge, in case of insufficient aeration, is

mentioned by Bos [7]. It relates to air pressure underneath of the nappe.

AQ/Q = -0,2 (p,/pgh)-°-*2 (43)

The author compared this theoretically with the results of Sarginson in

relation to surface tension effect (which also leads to a pressure in the
water which deviates from the atmospheric one); however, the latter leads
to a 5 times greater correction than Eq. 43. It seems reasonable to apply

Eq. 43, which is based on experiments.

B. Submerpged flow

The ratio of submergence is defined as:

§ = h,/h, (44)
Now h0 is the definition for the height of the upstream water level above
the crest, h, is the downstream water level, also above the crest.

2
Several authors have presented a reduction coefficient for the discharge,

where S is the only relevant parameter and where holp is left out.
The discharge is always compared to QO’ the modular discharge.
1) Villemonte [41] presents:

Q/Qy = (L - §1.%).208 (45)

2) Varshney and Mohanty [39] propose (for .03 < S < 1.0):

Q/Q, = Y(1.03 - 0.275 - §%) - .059 (46)
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3) As it is presented in Chapter 1, Figure 6 and equation 15, Abou-Seida

and Quarashi [2] propose an analytical approach, resulting in
Q/Q, = (1 + %s) Y(I-5) (47)

It is remarkable that Eg. 46 does not reach Q = QO when submergence is
zero, but this in on purpose: Varshney and Mohanty present experiments
where a kind of jump in the curve is observed between S = 0 and S = .03.
Theoretically it might be imaginable that at zero submergence the discharge
increases, because the last bit of air underneath is sucked out by the jet

and a little underpressure occurs.

All three equations are presented in Figure 13. Because at the modular flow
regime atmospheric pressure occurs under the nappe, any extra water
pressure will reduce the discharge, so a downstream water level higher than

the crest has a direct effect.

In the discussions presented by Villemonte [41] it is interesting to see
that he also points to to Eq. 47, while referring to the Frenchmen Dubuat
(Principles d Hydraulique, Vol. 1 p.203, 1816). Villemonte shows that his
own experimental results are better (within + and - 5% of his formula). At
his smallest investigated h/p value (p being the weir height) of 0.06, his
experiments yield a higher discharge, especially so when the submergence is
under 0.4. His higher h/p range (up to 0.25) results in a lower discharge

compared to Equation 45, especially when S > 0.4.

For the moment one must conclude that the bundle of curves in Figure 13

shows the possible scatter in discharge relations of submerged conditions.

crest width 1-2mm

p< 45°

nappe fully
aerated

D
TSI LSS S LSS .

Figure 10 Section of the Rehbock standard weir.
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Figure 13 Flow reduction by submergence at a sharp-crested weir; different

expressions.
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3.2 The weir with circular crest section

In contrast to the sharp-crested weir, the semi-circular weir does not have
a fixed point of flow separation. From a certain overfall height onward
(H/R = 1.5 to 1.8) the pressure under the nappe becomes lower than
atmospheric, and from this point on when H/R is increased, aeration can
occur. When aerated the flow separation point shifts backwards, and comes
below the crest level. Just upstream of the separation point the pressure
is still lower than atmospheric (flow separation is retarded, particularly
at the smaller diameters), and related to this retardation and to the low
pressures at the crest, the nappe becomes more curved and the velocity
becomes higher. For these reasons the discharge coefficient is greater than
for the sharp-crested weir. In the region 1.5 <H/R< 2 it is still difficult
to obtain a good aeration in a natural way.

Thus, as a measuring device the semi-circular weir is only used from H/R>
1.5 on.

Rouvé/Indlekofer [32] performed tests on a weir with semi-circular crest
(Figure 14) where, with some of the tests the air is sucked out, so as to
obtain comparative tests with and without atmospheric pressure underneath.
They also refer to a number of published data.

Figure 15 and 16 show the discharge coefficient C, in the following

d
discharge relation

Q = c,w(2/3) V2g H?/? (48)

The energy level H is introduced as the relevant parameter. Although a wide
range of the radius (l-15cm) and the weir height (20-95cm) is investigated,
the authors state that only the parameter H/R appeared to be relevant. The
weir height had only an effect within 2%. The test values in Figure 15 are

the average ones, obtained with a radius between 10 and 140 mm.

For small H/R values, where the nappe remains attached, the discharge
coefficient is presented in Figure 16 in more detail. At a small radius Cd

decreases and this must attributed to viscosity effects.

Similar results are found by Sarginson [34] for the full-circle cylindrical
crest. (In his definition of the discharge coefficient Sarginson uses the
upper water level h and not the energy level H). From Figure 17 it can be

observed that for diameters smaller than 86mm the discharge coefficient
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decreases with the crest radius. This must be a viscosity effect related to
the boundary layer which probably means that also the roughness of the
cylinder surface can have a considerable influence. From h/R=2 (or greater)
the flow separates from the highest crest point. The Cd does not grow and
even tends to become lower for h/R, exceeding a value of about 4. The
protrusion of the cylinder upstream from the weir plate, is causing the
weir height p not having so much influence on Cd’ because independent of

the weir height the water is almost stagnant underneath.

o]

PI27, SIS e

Figure 14 Weir section with semi-circular crest and with circular crest, a

as investigated by Rouvé/Indlekofer [32] and b by Sarginson [34]

4,0
35
aeroted
3‘0 e i i
25
naturally
HI/R attached
T 20
1% —_—
naturally / %
attached ©
<
1.0 i ”’//\9._
aerated QQ
*_Sp
05 l .

0]
055 060 065 070 075 080 085 090
—>» Cy4

Figure 15 Discharge coefficients of semi-circular crest with and without

sucking-out air (from Rouvé and Indlekofer [32] and cited authors)
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Figure 16 Discharge coefficient with attached nappe at varied crest radius,

from Rouve and Indlekofer [32].
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3.3 The nappe-shaped overflow weir

A. Modular flow

The crest shape of the nappe-shaped overflow weir was developed by experiments
in scale models where the location of the lower boundary of an overflow nappe
over a sharp-crested weir was exactly measured. All the radii of the curvature
are related to a reference length for which is chosen the "design head" Hy (in
fact the design energy head). When the energy head of free overflow HO equals

the design energy head H then one would expect that on the whole crest

pressure is exactly atmo:pheric. In reality small deviations occur. The weir
height p is not introduced directly, but in the form of the influence of the
velocity head ha of the approach velocity in relation to Hd' The crest shape
is found in Figures 18 and 19. All data are taken from USBR "Design of small

dams", Ref. [38].

The nappe-shaped weir type has the property that when the real overflow height

(H or Ho} equals H the pressure at the crest and the downstream face equals

dl
the atmospheric pressure, and hence only small risk of unwanted aeration or

cavitation occurs. When the real H value is smaller than H then pressure is

higher than atmospheric, and when H is greater than Hd thedpressure is lower
than atmospheric; the natural jet of the sharp-crested weir is thrown out
farther when H increases. The advantage of this weir type is its high
discharge coefficient. For instance, compared to the sharp-crested weir at the
same discharge, the crest is now at the top level of the underside of the
sharp-crested overflow nappe. This means that the equivalent crest height of
the sharp crest lays 12.7% of Hd lower than the nappe-shaped profile. An
additional safety exists for conditions at an extremely high flood, because
then the discharge coefficient becomes still higher as a result of lower crest

pressures (see also middle figure of Figure 20). This advantage, however, is

paid for in the form of an additional risk of cavitation.

The very systematic investigations of this weir type (crest shape and
discharge relations) have been performed by the US Bureau of Reclamation USBR

and the Vicksburg Waterways Experiment Station of the US Army (WES) [43].
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The upper graph of Figure 20 is a revised version from [33], applying the

definition of Cd’ similar as for the sharp-crested weir:
Q = Cyw (2/3) (Y2g) H?/? (49)

A few excercises and checks:

It is observed in Figure 20, the upper graph, that with a small H the
discharge coefficient reduces to 0.575. This case is comparable with the long-
crested weir for which was derived the theoretical discharge relation of Eq.
6. This equation equals Eq. 49 when Cd = 1/V/3 = 0.577 is applied, which is
well in agreement with the value of Figure 20.

Also one finds for a great weir height a discharge coefficient of 0.739. When
this is combined with the reduction factor of 0.78 at small HO/Hd (again a
situation similar to the long-crested weir) then 0.739 times 0.78 is read in
Figure 20 and this becomes 0.575 which is also in agreement with the
aforementioned Cd of 0.577.

Also one can see that for H0 = Hd the discharge coefficient for a high weir is
0.739. Reading in Figure 19 that Yc/Hd = 0.127 one can derive that the
equivalent sharp-crested weir is 1.127 Hd below the water level. The discharge
coefficient of the sharp-crested weir will be 0.739/(1.12?3/2) = 0.618 while
from the Rehbock formula (eq. 39) combined with Eq. 49 one can derive C0 =
1.?8/[(2[3J§E)} = 0.603. The difference of 2%% might be explained by the
correction in h of Imm which is proposed by Rehbock and which for small scale

tests results in a little higher value of Cd.

B. Submerged flow

Figure 21 shows the different types of flow which might occur at submerged
flow and the decrease of discharge coefficient. This graph, to be found for
instance in the USBR [38] was modified by Naudascher [24], who introduced p/He
on the horizontal axis. He is the upstream energy head, which generally will
be different from the design head (see in Figure 20 the central figure for the

influence of He/Hd).
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C. Modular flow with piers

When the weir has modular flow conditions also the effect of piers and

abutments is found in the "Hydraulic Design Criteria" of WES [43].

The width w which has to be introduced in Eg. 49:

w=[L~ —2(NKP +K_) H] (51)
L = total crest length between abutments and piers

N = number of piers

KP = pier contraction coefficient

Ka = abutment contraction coefficient

He = upstream energy level (above crest level)

Kp and Ka can be read from Figure 22 and 23.
To check the order of magnitude of such an correction:

when Kp = ,025
and K = .1
a
and N = 3 and He/L‘ = .1

the correction in crest length becomes:

2(3 % 0.025 + 0.1) 0.1 = 0.035 (or 3.5 %)

Hag /.Woter surface upstream from weir drawdown
i

q = CHo"

SR , P {—

33
i, hg = 2 |
Ya FPthg v s |
e = q? e - | .Origin and apex of crest
z ! = :
2g(P+h) i [P FORP PUS E S —
et S -

Upstream face-—- -]

x

Figure 18 Crest shape: symbols and definitions, from [38]
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3.4 The nappe-shaped spillway with gate

For the weir profile of the former section, the discharge coefficient of a
tainter gate can be read in Figure 24 and the one for a flat gate in Figure

25. The discharge coefficients are based on a pure two-dimensional situation.

The WES [43] presented the discharge coefficients for a sharp-edged tainter

gate as C. The discharge equation reads:
Q=CG w v2g H (51}

Go is the gate net opening as indicated in Figure 24, w is the width of the
gate opening and H is the energy head compared to the level of the centre of

the gate opening.

For the flat gate on a spillway crest the equation of discharge starts with
the free flow discharge QO (see for the determination of Qo section 3.3) and
then a reduction factor is applied. In Figure 25 it is indicated that the

reduction factor can be written as
= /2 _ 3/ 2 3/ 2
Q/Qq = (H, Hy 3 *y 2 (52)

This equation is based upon a consideration presented in section 1.5, and on
Equations 4 and 5. However, it seems illogical that the gate seat does not
correspond to the spillway crest level, whereas in Eq. 4 the bottom level is

the same as in Eq. 5.
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3.5 Broad-crested weirs and dikes

At broadcrested weirs the streamlines above the crest are approximately
parallel and there is a hydrostatic pressure distribution. From the upstream
water level to the level on the top of the crest the Bernoulli equation can be
applied. Two elements cause that a correction coefficient need be introduced:
there is an energy loss by friction and the boundary layer displacement
thickness Bd is a quasi-heigtening of the crest.

The discharge equation for a broad-crested weir with a horizontal crest
(sometimes called a long-crested weir) at modular (free) flow is found from

section 1.5, Eg. 6a and 6b.

= of =
q =h Vg (H0 hl) (53a)
For the condition of maximum discharge (equal to the conditions of free flow)
holds also:

h, = (2/3) H (53b)

4 0

So the discharge equation becomes (introducing (Ho—hl) equals the velocity

head)
qg= (2/3) Ho vag HOIB

(At the crest the waterdepth h, equals also the critical depth hl= dc= 3q2/g.)

1

In practice also a correction factor C is introduced so that the discharge

equation becomes:

Q =Cw (2/3) H0 Vg Ho/3 (54)
(w = width)

The discharge equation 54 is a theoretical one; a small correction is needed
due to the boundary layer effect.

Naudascher [24] gives the following theoretical corrections for a long-crested
weir with adequate flow convergence, without extra flow contraction or other
losses. It is based on a reduction of the net flow section by the displacement

thickness Bd of the boundary layer:

§ &

d iy
C=(l-2 —) (1 - z=)3/¢2 (55)
w Ho
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The displacement thickness of the boundary layer depends on the crest length L

and the Reynolds number (related to crest velocity and crest length).

I
s
~
w
)

for Re. < 3 10%® the Bd/L = (56)

L

E
]

for ReL > 3 10% the BdiL 0.037 ReL (57)

To give an order of magnitude for the necessary correction for the last

condition he presented the following table for C values, for the ratio w/L =

0.2.

H/L
L(m) 0.05 0.075 0.10 0,125 0.15
0.61 0.883 0.923 0.941 0.953 0.960
1.83 0.923 0.446 0.958 0.966 0.971
3.50 0.932 0.953 0.964 0.970 0.975
15.25 0.953 0.967 0.975 0.979 0.982

Table 3.5.1 Correction coefficient C in Eq. 54.

The downstream waterlevel has only effect when the induced pressure at the
downstream crest edge is higher than the hydrostatic pressure belonging to
the modular flow condition. This occurs when h2>hd (see Figure 26 for
notations).

Only when the back face of the sill is vertical, the submerged-flow
pressure conditions downstream of this face is assumed to be hydrostatic.
The waterdepth h2 can then be calculated with the momentum equation (see
section 1). The effect of the downstream water level is expressed as a

reduction which is a function of the submergence factor:
S = hz/ h0 (58)

Here h0 and h2 are the up- and downstream water levels above the crest

level. The downstream water level at which submergence has influence, is

higher than the critical depth hc, being 66% of HO’ because of the recovery
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of potential energy. This recovery is still more when the downstream sill
face is sloped. In Figures 27 to 29 some data about discharge coefficients
of broad-crested weirs and dikes are shown; they have been taken from DELFT
HYDRAULICS [10], [11] and [12]. At the dike model where also skew
conditions are tested (Figure 28) the downstream flume walls do not
correspond with the natural direction of outflow, so the discharge
reduction factor CRS (by submergence and by the skew approach flow) in
prototype might be somewhat greater than the measured one. The effect of
the skewness in Figure 28 is als greater than what is expected from the

considerations of Schdnfeld [35] mentioned in section 1.2.

free flow

Figure 26 Notations: flow conditions at a broadcrested weir.
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3.6 The morning glory spillway

The morning glory spillway is a spillway which is circular (or a part of a
circle) in plan. It is an option when a tunnel is applied in whatever way,
for instance a diversion tunnel left in place after the dam has been built.
The compactuess of its shape is favourable for its application. To prevent
siphoning of the whole tunnel, which would cause a dangerous situation at
extremely high discharges, a control section is created underneath the
spillway with, for instance, a sudden widening of the tube section, or
where air is let in to guarantee that atmospheric pressure occurs at that
level. The level of this air inlet cuts off the discharge, and even when
the inlet is fully submerged, velocities at the cut-off section are
restricted to JEEE where h is the difference in level between the upstream
energy head and the cut-off section. Figure 31 shows an example of how a

cut-off section is introduced.

It is not advised to apply the morning glory spillway for conditions where
prediction of a maximum required discharge capacity is still very
uncertain. At higher water levels Q increases with JEEE, whereas for a
straight spillway the discharge increases with H3 2, Therefore, the risk of
overtopping the dam is smaller in the latter case.

In Figure 30 is shown the different types of flow which can occur when no

aeration is applied.

At condition 1, the discharge is determined by the overflow capacity of the
crest.

At condition 3, at full siphoning, the total head difference HT is
determinative, Q = JEE_EE.

At condition 2 the level difference Ha determines the discharge. Ha is
between the upstream level and the highest point where air at atmospheric
pressure occurs. But when air pressure is lower than atmospheric, the
effective Ha is greater.

At condition 2 the Ha moves downwards at greater discharge, because the air
is sucked out gradually and the situation is very unstable.

Without the introduction of a control section by widening and/or aeration
it is in fact the downstream tube-end which, in condition 3, is the control
section, while with aeration at the point "orrifice control" of condition 2
the situation is stabilized at that level. See further the discharge curve

of Figure 31.
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Like the nappe-shaped spillway of section 3.3 the design of the crest of
the morning glory spillway is based upon the atmospheric wall pressure
condition related to a design discharge. And as in the straight spillway,
this condition is established by measuring the lower nappe profile of the
free overfall nappe of a sharp-crested weir (in plan circular) with radius
Rs’ see [42].

In the design of the morning glory spillway the requirements lead to a
compromise. This design process is an iterative one. In the final design
stage model investigations are often applied. The following elements should

be taken into account.

|

At the condition of submerged crest and discharge control at the
control section, the discharge has to pass any section without a wall
pressure lower then atmospheric, so the distance z below the upstream
water level follows from the conditions that z equals also the velocity

head; so
Q = m R? V2gz (59)

hence at any level

% %

Rsn ™ (Q/m)* (2gz)" (60)

m

o

As a first estimate in the iteration, the design head can be taken
equal to the demand of the design water level departing from free flow
and maximum discharge. With Figure 32 the outer radius RS can be
determined. As a next step HS can be read in Figure 33. RS and HS are
the values which were tested in the sharp-crested weir test of Ref.
[42]. The discharge is free flow when Hs/RS < 0.45, and is submerged
when HS/RS > 0.9 to 1. From HS and RS the weir shape can be designed

from Figure 33.

The location where the curves, discussed in a and b, meet can be a

[g]

first choice for the level of the discharge cut-off (control) section,
but due to a discharge coefficient smaller than one (0.9 is advised in
[38]) the control section is a little wider than the corresponding
section of the curve obtained in a. Then the transition between the
curves a and b is smoothed. Condition a can lead to a local or to a
total widening of the upper part of the bell mouth as found in b, but
this is not so when Hd/Rs is smaller than 0.225 to 0.3.
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The procedure does not lead straight forwardly to the final design, so
other values of Hd and RS have to be tried also.

The correspondance of the area of the control section with the tube section
further downstream, is also a point of consideration.

However, when other H, values are tried, the real energy head He is not

equal anymore to the gesign head. Figure 34 gives the correction for the
discharge (but only for Hd/RS = 0.3). In [38] it is advised to use this
curve for other Hd/R values also. But one should consider that at small H
values the discharge relation approaches the one of the broad-crested weir.
Therefore, in Figure 34 could also be completed with reduction factors (at
a small head) for other Hd/RS values than 0.3; they are calculated from
Figure 32 in combination with the theoretical discharge equation for a

broad-crested weir of Equation 54.

Another design element in the last stage of the design is related to
cavitation. In contrast to a straight spillway the discharges smaller than
the ones at the design head, cause wall pressures lower then atmospheric.
Wagner [42] also performed tests with lower pressures than atmospheric
underneath the nappe and these results could serve, by comparison with the

designed shape, for estimation of the related pressures.
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3.7 Labyrinth weir

The labyrinth weir is used for increasing the weir length within a limited
width of the opening. In the following the performance of the sharp-crested
labyrinth weir is presented, following the recommendations of Hay and
Taylor [16].

Figure 35 shows the Labyrinth weir in plan, and the applied symbols.

The following parameters are importance:
L/w = Length magnification

QN = Normal discharge of straight sharp-crested weir with width w

QL = real discharge over labyrinth weir

h0 = upstream waterdepth + lmm (like eq. 43)

P = weir height above (upstream) bottom

a = angle of the flanks; a equals L at a triangular shape
S = submergence factor = hzlh0

R = bottom step (downstream bottom lower)

When h0/p is small, the extra weir length tends to be fully effective and
globally QL/Qn = L/w within certain design limits.

The following recommendations are taken from Hay and Taylor:

- Crest-length magnification, L/w: If operation of higher head related to
crest height is envisaged, then length magnification greater than 6
gives little return when designing for hO/p ratios exceeding .25.

- Vertical aspect ratios, w/p: it is recommended that the adopted value of
the vertical aspect ratio should not be less than 2 in the case of
trapesoidal weirs (in plan) and not less than 2.5 in the case of
triangular weirs. Nappe interference effects will be negligible on a
weir designed in accordance with these recommandations. Where p is very
high, the value of w/p ratio may be less than 2 providing the ratio on
the head to the cycle pitch ho/w does not exceed 0.25.

- Side-wall angle a: This factor is of primary importance in determining
the performance of the labyrinth weir. Furthermore, the correct choice
of the side-wall angle o does not affect the structural costs. For
maximum performance, the greatest wvalue of the side-wall angle should be
adopted in the design, i.e. triangular plan-form weirs should be used

wherever possible.
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If the triangular plan-form is unacceptable for other reasons, a
trapezoidal plan-form having a side-wall angle not less than .75 times
the maximum value (given by the triangular plan form), may be used
without incurring a large loss of performance.

- Channel-bed elevation differences: Downstream interference which has
small detrimental effects on performance can be reduced by decreasing
the elevation of the downstream channel bed, and can be completely
eliminated for the operating range recommended here, if the difference
in channel-bed elevation is equal to or greater than the maximum
operating head.

- Aprons: Both upstream and downstream aprons are detrimental to
performance. However, they may be necessary for structural reasons. In
situations where a fall in the channel-bed elevation occurs on the
downstream side of the weir, the size of the downstream aprons will not
or nearly not affect performance, provided the channel depth at all
points of the downstream channels is greater than the expected depth of
flow in the upstream channel.

- Crest sections: Under high flow rates labyrinth weir discharge tends to
be, to some extent, independent of the weir-crest coefficient; the use
of complex, expensive crest sections is unnecessary from the hydraulic
point of view.

- Submergence: Because labyrinth weirs operate under smaller head than a
corresponding linear weir discharging the same quantity of water, in a
situation which usually involves operations under drowned conditions the
use of a labyrinth weir will increase the degree of submergence. It is
not recommended that labyrinth weirs be used where they would usually be

*)

subject to operation under heavily drowned flow conditions

It has been found by Hay and Taylor that the Villemonte equation for the

effect of submergence (Eq. 45) can be applied here too:
= P 1.85].3885
Q QO L1 (h2/h0) ]

Figure 36 and 37 give the discharge relations for the triangular-plan and
the trapezoidal-plan labyrinth weir for horizontal bottom and for deepened

downstream bottom.

% Authors comment: This is not literaly true because at submerged flow a
labyrinth weir placed over the whole canal width, downstream of a narrow
sluice, can serve as discharge spreader.
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3.8 Gates with underflow

In this section only two-dimensional situations will be considered, without
shafts and slots. In this section results from different authors duplicate,
but the reason of referring to these (nearly equal) results is that they
served for each of the authors as the basis for further analysis;
therefore, it was considered only fair to present also the results from
where they started.

When the upstream energy head is H0 and the pressure head just downstream

of the gate is h then the Bernoulli equation leads to the following

ll
discharge equation.

q=C.a V(Zg (Hy-h))) (61)

CC is the contraction coefficient of the jet, a is the gate opening.

In the case of the free jet the downstream pressure head hl equals Cca.

The flow contraction depends on the geometry: this results in an influence
of D/a in the case of a culvert with height D or, at free surface flow, of
hofa (where ho is the upstream waterdepth). But the flow contraction also
depends on the pressure distribution at the top of the jet contraction.
When the jet is submerged the piezometric head there is constant; at a free
jet the pressure itself is constant (atmospheric). The influence of the

gravity can then be expressed in terms of the Froude number.
Fr = VCIV(g Cca) (62)

(Vc is the velocity at the jet contraction)

When Fr is great enough the gravity influence disappears and the submerged
and the free flow have the same contraction. This is found both in the
theoretical study of Rouvé and Khader [33] and the experiments of Nago [23]

presented hereafter.

When the upstream water has a free surface, the Froude number and the
upstream waterdepth are coupled and Cc can then be expressed in terms of
hO/a only. At free outflow from a culvert Cc depends on both D/a and the

Froude number, as shown in Figure 38.

The Cc can be derived theoretically, as for instance published by Rouvé and
Khader [33]. Friction effects are neglected in the derivation. The interes-

ting presentation of Figure 38 is not directly suitable for practical use
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because the CC value and the discharge are both needed to calculate the
Froude number, and then Cc depends on this Froude number. In a design graph
the relation a/D, a,’dc and a{HO should have been presented (dc = critical
depth, HO

different points in Figure 39a the Froude number and the contraction

= energy upstream). A global check consists of recalculating at

coefficient Cc and comparing these results with Figure 38: no deviations

were found.

When the contraction coefficient is known, the free flow discharge can

be expressed theoretically by application of the Bernoulli equation as in
Eq. 61l.

From dimensional consideration it can be seen that Eq. 61 and the influence

of the Froude number can be combined in a single presentation.
q = Cya V2gH, (63)

Cd is a discharge coefficient.

But in general the following expression is used:
Q =Cyw a v(2g ho) (64)

It can be theoretically proved, see section 1.5 Eq. 8, that the discharge

coefficient Cd of Eq. 64 equals:

Cq = C./V(1 + C_a/hg) (65)
The advantage of the use of Eq. 64 and 65 over Eq. 61 is that no iterative

procedure is needed; from CC and afh0 the q can be computed.

Cozzo [9] investigated the contraction for sector gates and flat gates with
free surface flow and found systematically that the angle near the edge was
determinative for the discharge coefficient (Figure 39a). The flat gate and
tainter gate show the same results. Figure 39b, derived from the curves of

Figure 39a, shows the discharge related to the upstream energy head.

In Figure 40 the discharge relation for free flow is presented for a tain-
ter gate located in a roofed culvert with free outflow, from WES [43]. The
upstream pressure is expressed in terms of an energy head in the culvert.

In fact, it is the contraction coefficient which is presented in Figure 40.
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From the modular flow relations of Cozzo the limiting conditions for which
the downstream water level does not affect the modular flow discharge is
presented in Figure 41. This relation is found by calculating the
contraction coefficient CC from the discharge coefficient Cd (the inverse
of Eq. 65), and then calculating the conjugate depth of the hydraulic jump.

The Cc is from hofa = 2 on nearly constant.

In Figure 42 are presented calculations and measurements of the submerged
discharge relations at a vertical sharp-edged gate plate. The measurements
of Henry are found in Rouse [31], and are also discussed in Naudascher
[24].

The results of the computations presented by Rouse/Naudascher [24, 31] were
based upon the theoretical values of the contraction coefficient similar to
the ones presented in Figure 38.

Descrepancies were found which were attributed to disturbances like uneven
flow distribution, and so on. The author performed new computations,
presented in Figure 42, based upon slightly smaller CC values (see Figure
42 also), and he found a fairly good agreement with the measurements. The
use of adapted Cc values is useful when the discharge relations of complete
structures are performed with the computer program of Chapter 2.

There exist also measurements which are in agreement with these lower
values. For instance, Naudascher [24] presents similar measurements as the
ones of Cozzo, but then from Gentilini. These results have for great hofa

(about 12) values a C, of 0.585, corresponding with a CC of about 0.6.

d
Nago [23] performed a very systematic research on the free flow
characteristics of different types of gate edge. He distinguishes also, as
it was presented by Rhouvé and Khader in Figure 38, a flow contraction plus
an effect induced by gravity. Because Nago only considered free surface
flow the results are simpler. The contraction coefficient he obtained
theoretically. He presents the effect of gravity as a correction which can
be added to the contraction coefficient at submerged flow. The correction
is a function of afhD (Figure 44). The calculated discharge coefficients
are compared with measurements, Figure 46.

The results for the three gate types of Figure 44 are presented in

Figure 45.

Boiten [6] investigated vertical plates with round edges at underflow
conditions. The shapes are presented in Figure 47. The discharge relations

presented in Figure 48 show that all the circular shapes have the same
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discharge coefficient. It is observed that from hofa being about 2.5 that
this parameter has nearly no influence on the contraction coefficient of
the investigated circular shapes. At smaller values this parameter has an
important effect but measurements are then also scattered, due to air-
entrainment.

The discharge coefficient can be much higher for the rounded edge than for
the sharp-edged gate. It is remarkable that Boiten found a contraction
coefficient for the sharp-edged gate which is higher when compared to the

results presented above.

The results of a series of tests of reversed Tainter gates in completely
submerged culverts (Pickering [27]) with and without divergence in the
downstream culvert part, are presented in Figure 49 and 50. This is in this
part of the manual one of the few cases which represents internal flow. But
the reversed tainter valve is typically in use in a hydraulic structure

(high head navigation lock) and nowhere else.
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Figure 38 Contraction as function of Ylfa and Froude number, from

Naudascher [24] and after Rouve and Khader [33]
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basic equation [ —
Q=CyGo BV2gH on o1

Ny
where : D‘ A\
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C,4 = discharge coefficient 08

Go= gate opening
B = width of gate opening [
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Figure 40 Discharge coefficient for free outflow of a tainter gate in a

roofed culvert, after WES [43]
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Figure 47 Shape of round edges as investigated by Boiten [6]
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3.9 Gates with overflow

Two examples of discharge relations of overflowing gates are presented, the
drum gate in Figure 51 and the flap gate in Figure 52. The discharge

coefficients refer to the following equation:
a = Cy (2/3) /(Zg) H_*/? (66)

Results of a model investigation of a flap gate on top of a vertical
(Stoney) gate are presented in Figure 53. The angle a was varied between 27
and 68 degrees. As reference the results of Sarginson are also presented

(see section 3.2).

As for other gate types it might be that, depending on the crest shape,
some discharge data presented in section 3.1, 3.2 or 3.3 can also be used

for overflowing gates.
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3.10 Gates with combined under- and overflow

The discharge relation of gates where simultaneously over- and underflow
occurs, is not fundamentally different from the situation where only one of
the two occurs. Whether the situation is suitable for an estimate of the
discharge depends on how exactly the conditions just downstream of the gate
are known. The overfall nappe should be fully aerated, but that is also the
case for nappe flow without underflow.

Naudascher [24] discusses an example of a calculation where the momentum
equation is applied downstream of the gate under the assumption that just
downstream of the gate hydrostatic pressure occurs, even at the sloping
bottom. This is only justified when no recovery of potential is to be
expected.

Figure 54 shows the conditions, the symbols and the momentum equation as it
was applied to compute the water-level difference (h2— hl)' The coeffi-
cients Ca and Cc related to the nappe and the jet respectively, follow from
the nappe thickness (in vertical sense) at the end of the gate crest and
the contracted jet thickness (contraction is about equal to the discharge
coefficient).

Figure 55 shows the computed results compared to measurements.

(g, + 9,)2 g,2 2
Pg Pg o a o Qg
> (h.! + Ay)? - > {h2 + Ay)? = p _—h2 gy =~ .p _C - p ——

Figure 54 Application of momentum equation at combined overflow and

underflow, from Naudascher [24]
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3.11 The Howell Bunger valve

A Howell Bunger valve (also called hollow-jet value or cone valve) is
applied at the downstream end of a tunnel. It has the function of spreading
the jet. There is also a very good aeration and hence the cavitation risk
is reduced. The spreading of the jet is favourable for the stilling basin.
The central cone is fixed to the pipe through supports which are internal
vanes. The cylinder which moves around the pipe is the valve, see further
Figure 56.

Gieseke [14)] performed the theoretical study on the discharge relations of
the Howell Bunger valves and compared the results with measurements. He
applied potential flow theory and assumed radial symmetrical flow.

The gate opening (S/D), the cone angle (2a) and the cone diameter (D-2b)
was varied (see Figure 56).

For @ = 45° and b = 0 the computations were verified with different
experiments, which showed a good agreement (Figure 58). Figures 57 shows
the results of the computations with systematically varied parameters. The
C, values are discharge coefficients related to the tube section and not to

t
the gate opening.
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Gieseke [14]
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Conduit outlet
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The free flow loss of the conduit outlet depends on the Froude number

similarly to a gate with underflow at free flow conditions (section 3.8).

If the water in the fully filled conduit flows into the air, the discharge

capacity of the whole tube depends on the level at which the atmospheric

pressure can be assumed to act. At high discharge (great Froude number) the

influence of the gravity tends to disappear and the centre of gravity of

the pipe section should be taken as pressure head. Figure 59 shows results

for a circular conduit, published by the US army Waterways Experiment

Station [43].

1.0
09
0.8 P~
)
L‘; Tl
0.7 | <~ suggested design curvel |
] — .
o6 = N =
yp """-nu-...___'.lm1 [ =t
D 0.5 _"'z---....,_.___“4
~
-
H
0.4
0.3
0.2
1 2 3 4 5 6 7 8 9 10
V. 4a
F=\fg_lj =TV D5/2
LEGEND
PRESSURE GRADIENT SYMBOL DATA SOURCE
'--‘Q: EXIT PORTAL —O0——  STATE UNIVERSITY OF I0WA
—— o DENISON MODEL
| ] DENISON PROTOTYPE
I 0 GARRISON MODEL
A v YOUGHIOGHENY MODEL
+ x ENID PROTDTYPE
& FORT RANDALL WODEL
RS A FORT RANDALL PROTOTYPE
+ DAHE PROTOTYPE

BOTTOM SUPFORT

NONE
LEVEL
LEVEL
PARABOLIC
1 ON 20
PARABOLIC
LEVEL
LEVEL
PARABOLIC

Figure 59 Level at which the pressure head is zero, at a circular conduit

exit,

from WES [43].
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4. LOSSES OF COMPONENTS UP- AND DOWNSTREAM OF THE CONTROL SECTION

4,1 Orifice and intake losses

When the flow contraction is known, both orifice and intake (or entrance)
losses can be calculated with the momentum equation in the region
downstream of the section with maximum flow contraction (assuming
hydrostatic pressure at this section). Or, at submerged flow, the Carnot
equation can be applied. The flow-contraction coefficient in the orifice or
in the entrance is Cc with an average velocity in the contraction Vm and a
culvert velocity Vc downstream (Figure 60). Now introducing for the average

flow velocity in the orifice Vo the Carnot equation is:

AH = (V_ -V )?/2g = (V_/C_ -V )?/2 (67)

Ac= culvert area
Aq = orrifice oreo

Vo = Q /A, Ve =O/Ac
s, 7 L L L S o L L A A
/-_.
-1/
.—“'/ A
L=
——\Vm —_—-— VC
1'r:;cAo
T 7 Sy 2 T P P P
Vin= V'J/tr.
orrifice losses
N
——————— \
A-.= culvert area
W
L
N AR ALY
CeAe Vi e
RSN SRR SSNARARSNEANN o~ e ——
Vl'ﬂ = VC J‘Cc

entrance losses

Figure 60 Orifice and entrance losses

When the culvert is wide, compared to the orifice, the influence of Vc can
be neglected. When the culvert section is not widening (intake condition)

then VC = Vo and the entrance loss becomes:
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e |
= 2 = - 2 2
AHe Ke VCIZg (CC 1) ch2g (68)
The flow contraction coefficient Cc is derived from the orifice tests
presented in USBR [38] and shown in Figure 61, series 1. The conversion
from the discharge coefficient C from Figure 61 to the contraction
coefficient Cc is done as follows:
At low velocities (low Froude number) it can be derived that:
Ah = AH
The discharge relation of Figure 61 can be read as:
AH = Q2/C2 A22g
From (67) it follows that:
=1
AH = (VZ/2g)(C_ - A/S)? = (Q?/A%2g)(C;' - A/S)?
Combining the two expressions for AH:
Cc = C 'S/{S + 'CA) (69)

From the contraction coefficient the entrance-loss coefficient of a long

culvert can be derived by using Eq. 68:

o
Ke = (Cc - 1)2 (70)

From the Cc values presented in Figure 61, the Ke values of a culvert

become:
Cc 0.56 0.58 0.61 0.69 0.83
Ke 0.62 0.52 0.41 0.20 0.04

The discharge coefficients of Figure 61 clearly show that the discharge
coefficient C will increase when the culvert length increases. This is
caused by the spreading of the jet into the culvert (two-step flow
expansion) resulting in outlet loss reduction. The small value of Cc for a

sharp-edged orifice is in agreement with other experiences.
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Figure 62 is an example showing an inlet of a sloped culvert which can
remain partially filled with air or become fully submerged, only depending
on the shape of the entrance and H/D. In the case of the sharp-edged
entrance there is a control section formed at the inlet and due to the
sharp edge the flow section is largely reduced. These elements affect the
discharge capacity much. The line for the full culvert is only an example,
the real discharge curve depends on the culvert slope, the culvert length

and maybe the presence of air caused by vortices.

Figure 63 shows the sharp-edged box culvert inlet with a discharge
behaviour similar to the sharp-edged condition of the circular culvert of

Figure 62.
The discharge formula which is used in Figure 63 is:
Q = Cd w D v (2gh) (71)

where h is the height of the upstream water level above the bottom, D the
culvert height and w the culvert width. The expression (71) is similar to
the one that is often applied for gates (see Equation 64). The results are
comparable as well. (Figure 39 and 46).

Figures 64 to 66 show intake losses of concrete culverts. The section where

the gates are located is used as reference culvert section.

It can be seen that the nicely-shaped inlet of Figure 64, upper part
without slots, piers etc. has the lowest intake-loss coefficient, namely
0.16. For other conditions the loss coefficients vary between 0.2 and 0.8.
The losses in hydraulic models all seem to be lower than in prototype; an
explanation was not found in the reference [43]. Piers, slots, support

beams, etc. they all are elements that influence the hydraulic losses.
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square-edged top opening, dimensionless redesign after USBR [38]
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Figure 64 Entrance losses of concrete conduits, form WES [43]
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WAPPAPELLO™

(1:25 MODEL)
A=31', B=25'
c=20', D=20'
E=10', T=50"
Ke(THREE GATES)=0.50
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* CONDUIT NOT CIRCULAR

65 Entrance losses of three gate conduits, from WES [43]
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Figure 66 Entrance losses of two and four gate passages, from WES [43]
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4.2 Friction losses

In Figure 67 the Moody diagram is presented. This diagram shows the wall
friction for pipe flow. The results can also be applied for free-surface
flow if the pipe diameter D is replaced by the hydraulic diameter Dh or the
hydraulic radius Rh.
D =D = 4R (72)

Rh is the hydraulic radius which is defined as the ratio flow-section
wetted-perimeter.

The Moody diagram presents the friction coefficient related to the fully
developed boundary layer where the velocity profile harmonize with the pipe

diameter and the wall roughness.

The Cf coefficient is related to the wall friction which equals the

boundary shear stress t in the flow:
T =C, (0.5 p U2) (73)
(U? represents the averaged velocity in the pipe).

The Reynoldsnumber U D/v is related to the average pipe velocity and the
pipe diameter (v represents the kinematic viscosity, with a magnitude

of about 10-%). For prototype structures the Reynolds numbers are so large
and the walls so rough that only the horizontal line parts of Figure 67 are

relevant. The friction formula for large Reynolds numbers is approximately:

cp = 0.0606 {log (3 Dh/k)}—z (74)

For instance, in Thijsse [36] the following k values are found:

old concrete k = 10-20 mm rusty steel k = 1-2 mm
plaster k = 0.5 mm riveted steel k = 0.5-2 mm
smoothed concrete k = 0.2 mm welded steel k = 0.1 mm
rock excavation k =0.2-2 m

sand in movement = 10-100 mm stone revetment k = 5-20 mm
slopes (+ vegetation) =0.1-0.2 m riprap k = Dgo
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Figure 68 illustrates how at the entrance of a rough pipe the local friction
developes with respect to the distance. Cfx is the friction coefficient

averaged from the mouth to the distance x. The higher Cf at the mouth, is due
to the greater velocity gradients near the wall (at a contraction the velocity
profile tends to be block-shaped, without a boundary layer).

More general information about how friction developes with respect to the

distance can be found in Figure 69, from Harrison [15].

The friction coefficient has again been expressed in terms of a distance-
averaged value. Such friction tests are performed with a plate in an unbounded
flow. In practice, friction in a pipe or in a culvert will not fall below the
friction belonging to the fully developed flow in the culvert section over
long distances. The latter can be derived from the Moody diagram. Harrison
[15] shows that in the transition region between laminar and turbulent flow

there can exist lower C_. values than presented in Figure 69. This is similar

f
to what is indicated in the Moody diagram of Figure 67 in the transition

region. Related velocity profiles are, among others, found in Kolkman [20].

Pugh [26] presents measurements in a rectangular prototype conduit. The

friction that was measured at the pipe inlet was greater than Tullis found
[ref. 37]. Shear stress became constant at a distance x/D = 20 which is in the
range of what Tullis found. The other test results of Pugh confirmed what is

already known about velocity profiles and boundary layer development.

B. The developed flow

Figure 6

7

The Moody diagram
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4.3 Slots

Loss coefficients of slots are presented as fractions of the velocity head
of the average flow velocity in the culvert section where the slot is

located.
AH = K_ Uz/2g (75)

In general, the slot coefficients are small compared to other losses. A
possible additional effect of a slot is, when located just upstream of a
diverging section, that the flow spreads better over the divergence owing
to the induced turbulence. Then there is a greater recovery of potential

energy and reduction of energy loss.

Levin [22] tested a number of slot shapes located in a round tube (diameter
210 mm) along the whole circumference and in the walls of a squared
section, having a height and width of 150 mm. Figure 70 shows the

investigated slot sections.

The results of the test in the squared tunnel were not accurate because of

the deformation of the test section caused by hydrodynamic pressures.

Conclusions were:

1. Between Reynolds numbers of 3.5 10% and 8 10% (related to the tunnel
section) no effect of the Reynolds number was found

2. Low pressures locally appearing downstream of the slot faded out at a
distance of 12 diameters behind the slot

3. Rounded corners gave a decrease in loss in the order of 7-15%

The tests in a circular tube with the slot all around (only the slots with
sharp edges were tested again) show that the influence of the Reynolds
number was still observed till Re = 10%; this is amazingly high. The losses

are shown in Figure 71.
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(D = 209.5 mm)

A theoretically plausible approximation is that losses are proportional to
the length (along the perimeter of the culvert) and inversed proportional
to the culvert section.

The further elaboration performed by Levin is not presented here; the
empirical formula are complex and slot losses as he found them are low

compared to other losses and their inaccuracies.
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4.4 Exit losses and hydraulic jump relations

Exit losses are defined here as losses which occur at the transition of an

outlet into a downstream canal or a larger basin like a lake or the sea. In
certain cases the control section of the structure can alos be at the exit.
The exit can be an abrupt expansion or a gradual expansion with divergent

walls and/or a sloping bottom.

A reduction in exit losses gives an increase in discharge in the case of
submerged flow or intermediate flow (for definitions see Chapter 1).
However it has no effect on the discharge if the downstream water level is
so low that modular flow is involved. On the other hand, the modular
(maximum) flow will still occur at a higher downstream water-level. So it
is meaningful to calculate exit losses in case of a fully submerged flow
(at low velocities), and of intermediate flow till the limit of modular
flow.

The difference between submerged and intermediate flow causes that at
intermediate flow the exit losses with abrupt expansions should always be
calculated with the momentum equation whereas at fully submerged flow the
Carnot equation can be applied as well.

When no special measures are taken, the exit loss coefficient at an
(abrupt) large expansion is equal to 1, which means that all kinetic energy
is lost.

If the outflow runs into a canal that having a limited section, it follows
from the momentum equation that some of this energy is regained.

From the Carnot equation can be find for instance:
= - 2
AH = (V| - V,)?/2

This shows that a greater V2 yields smaller losses.

Expansions that diverge gradually also regain potential energy, leading to
a further reduction of losses.

At modular flow conditions in the control section, super-critical flow will
occur downstream of this section, where energy loss takes place by bottom

friction and/or a hydraulic jump.

It has been decided to include in this section also the hydraulic jump
relations. They are important when studying the limit-conditions downstream,

where modular flow can still occur.
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A. Abrupt expansions downstream of the control section

It has been discussed in Chapter 1, that at an abrupt (90°) expansion the
momentum equation can be applied and losses can be calculated because then
the hydrodynamic forces, exerted on the back face of a weir, a gate or an
orifice are known to be hydrostatic. So the forces exerted on the down-
stream water by the rear side of the outlet are related to the local water
level. At the inflow of the downstream water, the pressures and the
advective momentum flux (fluid density x discharge x velocity pQV) are
often also known, being the pressure and momentum advection which belongs
to the modular flow condition of the control section.

If there is a nappe over a shrap-crested weir, the highest downstream water
level at which modular flow in the control section can exist, is the water
level equal to the crest level. Together with the nappe momentum, the down-
water level h3 at some distance further downstream can be determined. In
Figure 72 this is illustrated for a nappe with width w, flowing into a
downstream basin with width W. The coefficients m and my refer to
discharge coefficients. The aim of Figure 72 is to calculate h3 when a
certain H1 is introduced. Solving these equation is laborious but the
procedure of Chapter 2 can be helpful.

A similar computation can be set up for a submerged hydraulic jump. The

discharge relation of flow under a gate can be treated similarly to Ql in

Figure 72.
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Opening width w

Flume width W

Assumptions:
1 atmospheric pressure in upper part of II (side ventilation)
2 hydrostatic pressure in lower part of II

3 well-distributed flow distribution at section 3

h
- o ;= By - J2g (H, - b,
Ql = mw é { 2g(l{l h2)} dz = mw h2 2g (Hl h2)
(H,-hy)
Q, = m,w [ J2g z dz = m,w (V2g) (H, - h, )3/
2 2 0 2 1 2
Q=0 +0Q (A)
h2
Momentum-flux, = pm,w é 2g (H - h)) dz = pmw 2g (H - h,) h,
(Hl— hZJ
Momentum-flux, = pm, w J 2g z dz = pm,w g (H, - h, )2
2 2 0 2 1 2

Momentum-equation applied to the fluid between 1l and 3

(Q,+ Q,)*
5 = If‘llpg“"'di +p ——ﬁgg———— (B)

YogW d2 + Momentum-flux , + Momentum-f lux

1

From Hl and Q (when m and m, can be estimated) d2 is found from A, and

from d2 and Q, the value of d3 is calculated with B (may be using the

program of Chapter 2).

Figure 72 Exit conditions with a submerged hydraulic jump calculated with

the momentum equation
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B. Hydraulic jump relations (two-dimensional)

Only those hydraulic jump data which are related to the computation of
hydraulic losses are presented here. Not included are considerations about

the jump stability, the design of stilling basins etc.

The application of the momentum equation for the hydraulic jump is well-
known, the results are presented in Figure 73.
Figure 73 is based on the momentum equation for a rectangular prismatic

canal:

hpgd? + pq(q/d,) = %pgd? + pq (q/d,) (76)

Division by pg and introducing the Froude number Fl for the upstream side
(F1 = VI/ngl) gives

2 2 2 _ 2 3 2
%dl + d} F} %dz + (dlfdz) F} (77)

or:
(1 - d2/d1>(1 + dzfdl) = 2 Fi(l = dzfdl)/(dz/dl)
resulting in

- o 2
d,/d, B (-1+ Y1+ 8F%) (78)
This expression is found in many references. It is only valid at a well
distributed flow, because the momentum-flux does not contain a correction
factor.

In Figure 73 the following symbols are used. The index 1 refers to the

velocity V and index 2 to the

oncoming supercritical flow with depth d B

l!
conditions behind the jump.

The term hj refers to the difference in depth hj = (d2 - dl)' The symbols
Hl and H2 refer to the energy levels.

Figure 73 can be well applied for the hydraulic jump at a horizontal bottom
when the starting conditions upstream of the jump are known. This is for

instance the case at free flow models of a gate.
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For the design of stilling basins the author has designed a chart variant
from which directly the level of the bottom of the stilling basin can be
derived, see Figure 75. This is done by introducing the critical depth dC
as the length by which all other length parameters are made dimensionless.
d, and d, again refer to upstream and related conjugate waterdepth. Hl and

1 2

H2 is respectively the upstream and downstream energy head.

The critical depth represents the discharge per unit of width:
d, = (grlgy (77)

The required energy loss AH of the hydraulic jump related to dC determines
the Froude number. The bottom level of the stilling basin also follows
directly, because HzfdC can be read in Figure 75. A second curve with 10%
extra reserve in conjugate depth (advised for the USBR stilling basins, see

Ven Te Chow [40]) is also included.

The use of the graphs, Figures 73 and 75, can be replaced by the
computation procedure of Chapter 2 (introducing directly the momentum
equation). In that case the momentum-flux can contain correction
coefficients for the uneven velocity distribution.

Particularly the momentum flux of the incoming flow will be sensitive to P

values greater than 1. (see further Chapter 1, Figure 1.3).
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C. Hydraulic jump on a slope
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Figure 76 The hydraulic jump data sloping bottom (from Ven Te Chow [40])

For a sloping bottom the two-dimensional hydraulic jump relations are also
known, see Figure 76. It is important to know at which downstream water
level the modular flow gets (partially) submerged if the upstream jet is
the outflow of a gate or a weir nappe . With Figure 76 this can only be
found with an iterative search. Therefore another graph has been prepared
in Figure 77, using the results of Figure 76. If AH, and dcr are known, the
dip in the water level can directly be read. AH the difference between the

energy level of the incoming flow and the downstream water level, and the
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dip is defined as Ah. If the dip is known the Froude number Vllvg dl can be
found, see the expression mentioned in Figure 77, and from that the length

of the jump can be read in Figure 76.
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Figure 77 The dip in the water level at the hydraulic jump on a slope.
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D. Gradual expansions

For submerged flow at very low Froude number, losses in gradual expansions
are known from internal flow data.
The expression to define the losses is related to the Carnot equation at

abrupt expansions:
AH = € (V| - V,)?/2g (78)

Free-surface flow tests were carried out by Formica [l3]; Bos [7] compared
these results with Idel cik’s results for internal flow with various top
angles (see Figure 78). Other types of expansion investigated by Formica
are shown in Figure 79.

The scale of the Formica tests was quite small and presumably the Reynolds
number will still have had influence. This, however, cannot be the explana-
tion of these losses which are twice as low as those of Idel cik. Idel cik
suggested that the expansion ratio is of little relevance. This is not a
priori evident. The curves of Idel cik are for a = 90° a little higher than
the Carnot losses which were based on a hydrostatic pressure distribution
just after the expansion. This agrees with other references. So for this
moment it seems advisable to multiply all formica coefficients by 1.2.

In Figure 80 Idel ‘cik data are presented for a gradual expansion with

outflow in a large canal, using an optimal diffusor angle (low losses).

VALUES OF § 1to¥d nod teé Mes 1;04 \llal 1to2 1ol
L 1 1
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Figure 78 Expansion losses in closed and open conduit flow, from Bos [7]

and after Formica [13]) and Idel cik [17]
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E. Hydraulic jump in a gradual expansion

Downstream of a control section often divergent sections are applied.
have two advantages:
- lower losses, particularly at the submerged flow conditions

- spreading of discharge over a larger width

Systematic test results are only available about conditions with a

horizontal bottom.

Two conditions can be considered:

- Free hydraulic jump, systematically investigated by Woodbury and
Padmanabhan, ref. [44]

- Submerged hydraulic jump (behind a gate with non-modular flow),

investigated by Abdel-Gawad and Carquodale, ref. [1].

The hydraulic jump in a divergent section is called "radial hydraulic

These

jump". The width at the throat w and the divergence angle 26 determine the

radius r, before the jump (being % w/sin (8/2)) and the phenomena in the

1
divergent part are supposed to be a part of a circular hydraulic jump

condition.

For the free radial hydraulic jump the sequent depth can be derived from

Figure 8l. There is still a slight dependence on the ratio of the radius r,

and r,, so only a first estimate is obtained.

For the submerged hydraulic jump (definition scetch is Figure 84) the

relations found by Abdel-Gawed and Corquodal [l1] are presented in Figure 85

and 86.
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notation
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4.5 Trash racks
The losses at trash racks depend on:

A. shape of the bar section,

B. blockage factor or solidity (S) which can also be written as EIw/W (w=
width of one single bar, W = width of the whole flow section if bars are
absent),

C. the angle of approach of the flow. If there is horizontal flow and the
bars stand inclined, the sin(6) is introduced, with © = 90° when the
bars are vertical.

D. when the bars stand vertical and the flow is horizontal but not
perpendicular to the plane of the rack, the skewness angle a is
introduced with a = 0° if the flow is perpendicular,

E. the other structure elements such as trusses, sills, slots which are

related to the rack.

Losses can be largely influenced by a skew approach angle, irregular flow

distribution, trash and ice.

If Va is the approach velocity (or, when there are no bars, Va is the
average flow velocity in the trash rack section) the losses are expressed
in terms of:

AH = (V;l2g) (79)

Ctr
(this is method C of section 1.9 and Figure 8)

When the trash rack is inclined, the loss reduces to:
= 2 i
AH = C, (v2/2g) sin © (80)

Short bars (seen in flow direction) have higher losses than longer bars.
This is caused by the tendency of reattachment of the flow at the longer
bars.

If the length is introduced as t, the increase in t is effective until

t/w > 5, see Figure 90. The effect of streamlining is important, see Figure
88, but the effect reduces when there is a skew approach flow. For further
data of flow resistance of different shape see also next section on bridge

piers.
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Figure 89 shows Ctr values for different sections of bars and various
values of the solidity S.

Figure 90 contains information for greater blockage of flow. This
information is important because if the other trash-rack elements
(mentioned under point E) are taken into account the blockage of the flow
is much greater than from the bars only.

Trusses are sometimes badly shaped so that loss coefficients correspond to

bars with a small t value.

In section 1.9 the use of the Carnot formula for the computation of trash
rack losses has been discussed. Orsborn [26] also discusses this point,
referring to earlier work of Escande. For the contracted flow, a
contraction coefficient of .9 should be applied if S is in the order of 8%
and this coefficient is 0.65 if S is in the order of 50% (the contraction
coefficient is related to the net area between the bars). The contraction
coefficient is rather low and the important flow-area reduction can cause
that at an increased discharge (at free surface flow), modular flow

conditions occur causing a further decrease of discharge capacity.

In Figure 91 the losses are presented at skew approach velocities.
Allthough an empirical formula, constituted by multiplication of two
independent factors has its inherent inaccuracies, the losses correspond
within 20% with the other presented data. But in view of other inaccuracies

in the estimation of trashrack losses this is still acceptable.

INFLUENCE OF APPROACH-FLOW ANGLE ON BAR-LOSS COEFFICIENT

Conditions: Solidity = 0.37; Vertical angle 8=90°

Bar
Shape

Flow e *

Angles Bar Loss Coefficient, Ctr

a= 0° 113 0.86 0.78 0.48 0.42 0.35
a=30° 1.46 0.76 0.71 0.43 0.68 0.22
a=45° 2.05 1.29 1.29 0.94 1.29 0.67
a=60° 4.26 245 2.81 2.19 3.05 1.84
"C. is loss coeficient A H=C,, V;72g

tr

Figure 88 Trash-rack losses at skew approach flow, from Orsborn [26].
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4.6 Resistance of bridge piers

In the following, only very schematised cases are considered. For example,
no deepening between the piers by the locally enlarged bedload capacity or
by scour and no rough bottom protection around the piers are taken into
account. The flow is assumed to be parallel to the canal or river axis.
Moreover, all experimental data were obtained by tests performed in
rectangular flumes and all data presented here relate to rectangular flow
sections. The ratio of water-depth over pier-width is not considered,
although there are indications that this parameter might have some
influence (Naudascher [25]).

The above simplifications permit the application of one-dimensional
hydraulics, in the same way as discussed for other hydraulic structures in

section 1.4.

Three regimes of flow are distinguished (Figure 92); types A, B and C refer
to the WES classification [43].

A Subcritical flow condition (fully submerged and intermediate flow).

In this situation the water level upstream of the bridge depends on the
initial water depth (di) and the discharge of the undisturbed river. The
initial water depth also corresponds to the depth downstream of the
bridge (d2 in Figure 92) apart from a slight modification by friction

and head loss due to deceleration.

B Modular flow condition (critical flow).

A unique relation between the water level upstream of the bridge and the
discharge will occur here. It is usual to define the critical depth in
the control-section by using the full width of the flow section between
the bridge piers, neglecting the effect of side contraction of the flow.
The necessary correction coefficients are found from empirical data. The
energy level which belongs to the critical depth between the piers
determines the energy level upstream of the bridge and the corresponding
upstream water level can also be calculated. The water level downstream
of the bridge can be either supercritical or subcritical (see Figure
92). If the initial water level is in between these levels, the super-
critical water-level will occur in combination with a hydraulic jump
further downstream. If a downstream loss coefficient is estimated the

local downstream water-level can be derived, but this has no practical

importance.
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Which condition - the supercritical or the subcritical one - will exist

is found from a further analysis of the flow downstream of the bridge.

.

W C__w )

T »
T~ BRICGE PIER

CLASS A

do)dc

CLASS B i

do >dC !

cassc L LF
do=dj = —=—d=—= _Hf//

ELEVATION

Note: S = w/W = blockage ratio
= total pier width

= gross channel width
upstream depth

= depth within pier section

N = 0

= downstream depth

A A A A X OE
[l

= critical depth within the unobstructed
channel section

dcl = critical depth within the pier section

= 1initial depth

Figure 92 Water levels for the three flow regimes, A, B and C
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C Super-critical flow condition.

At high river velocities the water level just upstream of the bridge as
it is found for type B flow is not sufficient to evoke a hydraulic jump
(upstream of the bridge) and the flow under the bridge remains thus also
supercritical. All water levels are now fully determined by the upstream

conditions and the upstream water level d. equals now the initial water

0
level di' Regime C, which occurs at mountain rivers, is not of interest
for backwater effects; its interest is mainly in forces exerted by the

flow on the piers and the maximum water level under the bridge.

In table 4.6.1 the properties and needed calculations for each of the flow

regimes are summarized.

name per influence needed
definition initial depth calculations
A Subcritical dl > dcl d2 B di clO = £ (q, S, dz)
B Modular d, =d no influence d =£f (q, S)
— 1 cl o
(critical)
c Supercritical dl < dcl do = di d2 = £ (g, '8, do)

Table 4.6.1: Properties of flow regimes A, B and C

Figure 93, from WES [43], shows the limits of type A, B and C flow regimes
as function of the initial conditions and the blockage ratio.

Curve | is obtained by taking the critical depth in the section between the
piers and its corresponding energy head, from which the (equal) water
levels up- and downstream at the wider sectons are derived (subcritical
condition without additional losses). The calculated water level applies
to the downstream limiting condition between modular flow and submerged
flow. Curve 2, now including hydraulic losses, follows from interpretation
of experiments; at the same critical flow condition between the piers the
downstream energy head and corresponding water level (which equals at the
limiting condition also the initial water level) is lower when losses are
involved. Curve | represents the subcritical depth upstream of the bridge
at modular flow. This depth is also the available sequent depth of a
hydraulic jump which can occur for supercritical flow in the upstream
region. From this depth the sequent supercritical flow conditions can be

derived, which results in curve 3.



136

In the following the three flow regimes will be considered in more
detail in the sequence C, B and A. For definitions see Figure 92. The
discharge per unit width, q, is defined in the initial situation without

bridge piers.

Flow type C (supercritical flow): No further experimental data are
available; WES advises to get insight in the flow behaviour by application
of the momentum equation. In Figure 94 a computation result for the water
level under the bridge is presented. The assumption was a constant energy
level without additional losses. However, this computation is on the unsafe
side so a factor a for flow contraction must be applied. It shows clearly
that an important set-up of the water level can be expected. The graph has

been obtained by application of the Bernoulli equation:
dy *+ 92/2 dy* = d, + {q/(1-aS)}?/2g d,? (81)

(do and d, refer to the water depth upstream and between the piers)

1
In the figure dc applies to critical depth at the section without the
bridge piers. Between the piers the discharge per unit width is higher than

upstream of the bridge
q, = g/(l-as) (82)

Type B (modular flow): Figure 95 presents the upstream water level for two
nose shapes of a bridge pier. Contrary to subcritical flow where pier
losses are determined by the nose and the afterbody shape, only the con-
traction induced by the nose shape will determine the flow section at

modular flow.

Type A flow (fully-submerged and intermediate flow): the bridge pier losses
for low flow-velocities (due to the near-horizontal water level) are fully
comparable with the bar-losses at trashracks presented in the former
section. But at higher velocities a dip in the water level occurs, giving
an increase of losses. The higher velocity is expressed in terms of an
increased Froude number, a decreased relative water depth d/dC or an
increased relative velocity head V2?/2gd. (These numbers have in fact all

-
three the same significance, for instance F = (dfdc)s.)

For increasing velocity, the dip in the water level initially increases in

proportion to the velocity squared, but when the dip increases the velocity
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in the contraction increases more rapidly due to the additional effect of a

decrease in water depth.

Two formula for bridge pier resistance are discussed below, the Rehbock
formula and the Yarnell formula (applied in the WES charts [43]). To have a
basis for comparison some uniform parameters are introduced in both
formula.

Rehbock (taken from Reh [29]) developed the following formula:

AH = Cbr V§/2g (83)

c._ = {8

br

i S(Som 1)} (0.4 S + 82 + 9 S4)(1 + F;) (84)

(Bo = factor depending on the shape of the pier, S = blockage ratio = w/W,
F2 = Froude number downstream = VZIJEEE). The downstream Froude number is
also the Froude number for the initial condition. It is seen that Rehbock
took into account interaction between blockage and pier shape (the product
terms with 80 and S) but in his expression the amplification due to the
Froude numbers is the same for all bridge pier types. This indicates that
he tested the piers at relatively low velocities (near the modular flow
conditions it is mainly the flow contraction at the pier nose which is

important and not the total pier shape).

To enable comparison with other formulae for bridge pier losses Eqs. 83 and
84 are transformed.

Making use of the fact that the drag coefficient of one single bridge pier

equals (this will be discussed hereunder)

Cd = Cbr/s (85)

the drag coefficient (derived from Equation 84) at low flow velocity

F22 << 1 and zero blockage (S = 0) becomes:

Cdo = 0.4 50 (86)

and Equation 84 transforms into

= - 2 4 2
Cbr (Cdo CdOS + 0.4 8)(S + 2.5 S2 + 22.5 S*)(1 + F2 ) (87)
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Remark:

Equation 85 is not formally derived here but when the drag of a pier is

defined as

" 2
D = Cd % p A wdo (a)

and when the momentum equation is applied at a condition where there
are small velocities and a small head differences it can be found that
the pier drag is just compensated by the force induced by the

difference in water level

D = Ah (pg wdj) (b)
And also can be found

Ah = AH (e)

Now equation (b) in combination with (c) and (83) results, taking into

account that V2 ~ VO’ in:
= 2 = 2
D=C. _ (Vy2/28) (pg wdy) = C, % p Vi wd, (d)

Equation a and d combined result in eq. 85.

In Figure 96 the Cd

presented. Although not all sizes are explicitly mentioned the drawing is

5 of a number of piers as investigated by Rehbock is

undistorted and all piers unless indicated otherwise, have a length of 6 to

6.7 times w (probably 6.66).

WES [43] proposes for Cbr in eq. 83 the use of the Yarnell formula:

c = (d

br dz)f(V22/23) = 2K{K + 10(V2’f2g d2) - 0.6}(S + 15 S%) (88)

4
The factor K can be transformed, using Eq. 85, into Cdo (V=20and S =0)

C4o = 2 K2 - 1.2K (89)

from which:

K =0.3 + (0.09 + 0.5 Cy )°-° (90)
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The proposed Yarnell K factors are transformed in the next table into CdO

and compared with the Rehbock values of corresponding shapes. Especially

for case a (the semicircular nose and tail), a great difference is seen.

Pier shape K derived Cdo from Fig. 96
a. Semicircular nose and tail 0.90 0.54 0.84
b. Twin-cylinder piers with 0.95 0.67
connecting diaphragm
c. Twin-cylinder piers without 1.05 0.95
diaphragm
d. 90 deg. triangular nose and 1.05 0.95 1.15
tail
e. Square nose and tail 1.25 1.63 1.56

Table 4.6.2: The Yarnell K factors, the derived Cdo factors therefrom and

corresponding values from Rehbock

The Yarnell formula is presented graphically in Figure 97. Figure 98 gives
a comparison with Rehbock results for shapes a, d and e (as indicated in
Table 4.6.1) for varying d2/dC values.

The differences are probably due to the fact that the Rehbock formula is
here applied in the range beyond the experimental range from which it was
derived. Very small S values were probably not tested either, nor were the
very large dzfdC values (to prevent too low values of the Reynolds number).
It is interesting that the best agreement is found for dzjdc in the range

of 3 and for the square-nosed and -tailed piers.

In recent years an investigation of Al-Nassri and McBean [3] has been pu-
blished which covers a variety of shorter pier shapes. The range of F2 was
between 0.25 and 0.6 the blockage varied between 12 and 35%. Figure 99
shows the test results. Instead of water depths the energy levels H with
respect to the bottom level were used.

A direct comparison with the Yarnell formula is difficult because the two
presentations are quite different; therefore only a comparison with the
Rehbock formula is presented. Shape 1 and 5 of Figure 96 was compared with
b and a of Figure 99; the comparison is presented in Figure 100. In general
the Rehbock formula gives higher water level differences (where the Al-
Nassri resistance is higher the diamond pier was also shorter and hence

less streamlined).



2.1

140

—
1.9 ///
CLASS A //r
@
/ CLASS A OR B
. -l
KO
631.3
5
g 1.1 (
\ CLASS B
0.9 |
\ Limiting A{ by momentum method dj =;”iti0| waterdepth
{ KOCH - CARSTANJEN) without iers)
0.7 \\ - "
dc= critical depth
‘\\ (without piers)
05 |- =
& T ) -
00 C01 02 03 0.4
— 3 blockage S:=Lw/wW
Figure 93 Flow regime as function of the initial flow conditions in a

rectangular canal, from WES [43]



s
'4' / f/
[ / @
& & /
7 // ,/A
é‘r 05 '!’ ;J L /
) f ‘7 de=critical depth (unobstructed )

,’/:/i// d; = initial depth and dg e dj
i

S =wilW

iy ’/ a >
,‘///
’

/ ~ Jdo
/ A P L

ol
o 05 10
do/ dc

Figure 94 Theoretical minimum change of the water level under the bridge

for flow type C (supercritical).

20— — ]

square @_s'e_piers
18 /
1.7 /

/ ~| round nose piers

1.6 : / /

dc=crit. depth (unobstructed ) |

do/d¢
(8 ]

/ T
1.4 a 4— \ [ C: -4
/ / i b 2haad o ¥
dey
1.3-—/ > N
DEFINITION SKETCH
des=crit depth section [
2l —— - = :
000 004 008 012 Q.16 020 0.24 0.28 032

S=wiw

Figure 95 Upstream water depth for type B (modular) flow, from WES [43]



142

1 2 3 4 S 6
05w 167w

3 1 K] 4

i : N |\

o - "
: of

Cp,=h56 115 061 040 053 032

7 8 9 10 " 12

Ow j&
3w |

5
20w |=

50w je-

33

!

048 040 032

CDO = Q22

i

Figure 96 Drag coefficients of piers investigated by Rehbock after

Reh [29]



143

0.16
i | [
4'\ - _-_‘ ';
k\o { H BEss
il ::P 1]
o 012 g7 A :
© o/\ i
0 5\ HHH
—~ o \ o
N v \ % HHITH i H
pe) s \ \ £ Easipuals H
o 2 \ o (i g :
! 3 VN % 10 14 18 22 26
I .08 — ; G —» amplification A
0.04
0
1 1.5 2 25 3

Round nose piers

At other shapes than round

TN L~ nose the (do-d2) Is a factor
A greater

do>dc dp > dc

>
|

DEFINITION SKETCH

Figure 97 Bridge pier losses for regime A (fully submerged and interme-

diate flow) based on the Yarnell equation, after WES [43]



144

— T T YARNELL

= YARNELL

-~ ,//
P
s
(dg-dz)/ de

(do-d2) /dc

5:01 > \‘_\\ \
v N .00

001 AT \\\
I T RemBock \\ N\
_ N

\
N 0005

d2/dc
case a ( table 4,6,2): case d:
semicirc nose / tail 90* angle nose / tail
Rehbock Cpg=0.84 Rehbock Cpg =115
Yarnell K =Q80 Yarnell K =108

TARNELL

(dG'd.?) fdc

001 N
T T T~ REHBOCK

0005
1 2 5 10
d2/dc

case e

square npose [ tail
Renbock Cpg=1.56
Yarnell K =125

Figure 98 Comparison between bridge pier losses computed from the Yarnell

and Rehbock equations



145

]+ U . ——
LEGEKD - FIER o
e Bx o 2 A B
+ 8 5:0333 -
4 S:0278 DIAMOND 1 7
ol o s:oz22 SHAPE 5:m@ Scm //////Z///, RECTANGUL AR
o I Sioiie b V. Wz
i :
7 |--~- 17em - —»| |-'-DCm -
&
6 r-05r.m
B ROUND POINTED |
I NOSE 8 TAIL 5cm 5l:rn PEAR SHAPE
- ¢ 58
-_-F — 17 cm __"'I == Ilcm—
' D
Lo
:f_ CIRCUL AR
?
~=| S emfa—
Fa=V,1Vgd,
(I”___ =k § o e ;A; 5io (equn!s Fj (unobstructed condition))
F—‘,NI-.SI -
[ AP e e I S - e 20 S i PP e Y
LEGEND x rieq LESEHD y_. _rum
v ws:033 B . es:o333 g
s s;o:zm 4 5 :0278
o 5 :0222 o g § fgfgé
0l o s:oi6s =0,
] 9 W5 :0,118
8 3 8
r = 7
- 6 o B
T
g B w®
e . -~
X4 5 - q
h g [
[ 0 3
o * . . L
. 5
5 0 . i} =
offo
i
I i 1 T R | ) S iy 19 [ —'t
ol 2 3 5 678910 ol 2
Fatl1-5)
DO e e ) e S
LEGEND LEGEND 3 . PIER
R ; o FIER 0J -
e« 5 :0333 J=E o= e 5:0333 @~
A S :0, " o S :0222
ol . o 5 :0,166
igl. 3 £ : W s s:on2
L] £ L]
8 n
¥
& 1 ]
o B i 6
Kl T
o8 o B8
= =
r + 9
o ]
o o .
L 3 T 3 o
2 5 o A
[ (S YR [ . A DI .| L N Y
! 2 3 o1 2 3 4 5 & 78910
Fal (1-5) Fai(1.5)

Figure 99 Test results at regime A according to Al-Nassri and McBean [3]
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Figure 100 Comparison of pier resistance of the Rehbock formula and the

tests of Al-Nassri and McBean
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