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Managementsamenvatting 

Proof of Concept voor analyse bestaande data uit verschillende water monitoring 

programma’s – praktijkgebruik kan starten 
 

Auteur(s)  Dr. Frederic Béen, Nienke Meekel MSc. 

In opdracht van Rijkswaterstaat heeft KWR onderzoek gedaan naar de analyse van databestanden uit verschillende 

meetinstrumenten en – programma’s voor onderzoek van watermonsters. Daarvoor is een eenduidige, schaalbare 

en overdraagbare workflow ontwikkeld. Er zijn nu twee proofs of concept of PoC’s: een voor hoge-resolutie-data en 

een voor lage-resolutie-data, waarmee data-analisten (na een uitgebreide demonstratie) nu al bestaande gegevens 

kunnen analyseren om nieuwe opkomende verontreinigingen op te sporen en te identificeren.  

  
 

Belang: meer inzicht in de aanwezigheid van 

onbekende stoffen 

Steeds vaker en op steeds grotere schaal worden 

monsters uit het aquatische milieu gescreend, vooral 

om probleemstoffen op te sporen, maar ook om de 

aanwezigheid van nog onbekende stoffen te 

detecteren. Rijkswaterstaat en andere partijen 

hebben daarvoor specifieke meetprogramma’s 

opgezet. De gegevens worden bewaard en er bestaat 

een behoefte om deze verder te analyseren. De data 

kunnen bijvoorbeeld meer inzicht geven in de 

aanwezigheid van onbekende stoffen in 

(oppervlakte)water dan uit de individuele metingen 

voortkomt. 

Doel: Proof of Concept (PoC) voor uitgebreide data-

analyse 

In opdracht van Rijkswaterstaat heeft KWR 

onderzoek gedaan naar de analyse van 

databestanden uit verschillende meetinstrumenten 

en – programma’s, met het doel een proof of 

concept te leveren voor de analyse van 

chromatografische en massaspectrometrische 

gegevens.  

De nadruk moest daarbij liggen op het ontwikkelen 

van een strategie die het mogelijk maakt chemische 

signalen (features) voorlopig te identificeren en 

relevante (voorheen onbekende) features te 

detecteren in tijd en plaats. Dit draagt bij aan de 

detectie van calamiteiten en van opkomende stoffen 

die geen onderdeel zijn van reguliere monitoring.  

Aanpak: benaderingen voor hoge- en lage-

resolutie-data 

Er zijn twee benaderingen toegepast en dus twee 

PoC’s opgesteld: een voor zogenaamde lage-

resolutie massaspectrometriegegevens (SPE-GC-MS, 

een veelgebruikte bewakingstechniek) en een 

tweede voor hoge-resolutie 

massaspectrometriegegevens (LC-HRMS, een 

opkomende techniek die SPE-GC-MS potentieel kan 

(deels) gaan vervangen). Dit was nodig wegens de 

verschillen tussen lage- en hoge-resolutiegegevens. 

Zo ontstonden twee PoC’s, die een algemene 

gemeenschappelijke strategie delen, beide 

ontwikkeld volgens een stapsgewijze aanpak:  

(i) invoer en filteren van de gegevens,  
(ii) normalisatie,  
(iii) verkennende analyse,  
(iv) identificatie,  
(v) validatie en  
(vi) rapportage. 
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Resultaten: twee PoC’s voor verkennende analyse 

en trendanalyse van onbekende stoffen in water 

Met de PoC’s voor respectievelijk hoge- en lage-

resolutie-data kunnen gebruikers gegevens 

verwerken volgens een eenduidige, schaalbare en 

overdraagbare workflow. Zij krijgen hulp bij de 

selectie (prioritering) en identificatie van relevante 

features. Deze twee PoC’s vormen een eerste 

platform dat kan worden aangepast en uitgebreid op 

basis van feedback van gebruikers en hun specifieke 

behoeften/vragen. Inzet in de praktijk kan worden 

gebruikt om de praktische haalbaarheid van dit data 

analyseconcept te bepalen. 

Beide ontwikkelde methodes zorgen ervoor dat 

meerdere metingen met elkaar vergeleken kunnen 

worden. Met verschillende statistische technieken 

(o.a. PCA, HCA) worden metingen gegroepeerd en 

kunnen afwijkende monsters worden gedetecteerd. 

Met behulp van trendanalyses kunnen onbekende 

stoffen die over de tijd toe- of afnemen worden 

geprioriteerd. Vervolgens kunnen de geprioriteerde 

stoffen voorlopig geïdentificeerd worden door het 

massaspectrum te screenen met verschillende 

databases. Zo is het mogelijk incidentele calamiteiten 

en trends te traceren.   

 

Toepassing: in de praktijk testen; aanbevelingen 

De ontwikkelde PoC’s vormen een eerste stap in de 

richting van de toepassing van de analyse van data 

uit verschillende meetprogramma’s of -systemen. 

Beide open source methoden zijn gepresenteerd 

tijdens een afsluitende demo. Na een uitgebreide 

demonstratie kunnen data-analisten de PoC’s in hun 

huidige staat van ontwikkeling gebruiken om 

bestaande gegevens te analyseren om nieuwe 

opkomende verontreinigingen op te sporen en te 

identificeren. In een volgende stap kunnen 

gebruikers de ontwikkelde strategieën testen, 

ervaring opdoen en feedback geven, zodat de 

werkwijze verder kan worden verbeterd. 

Tijdens de ontwikkeling van de PoC’s zijn diverse 

aanbevelingen geformuleerd die de implementatie 

van deze aanpak kunnen bevorderen. Voor SPE-

GC/MS data betreft dit voornamelijk het uitvoeren 

van blanco metingen en metingen in triplo. Voor LC-

HRMS data betreft dit voornamelijk een hogere 

frequentie (meer monsters in de tijd), zodat 

eventuele trends eenvoudiger te detecteren zijn: een 

hogere meetfrequentie maakt de gegevensanalyse 

over het algemeen robuuster.  

Rapport 
Dit onderzoek is beschreven in het rapport Final 
report HRMS data science PoC (KWR 2022.053).  
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Management summary 

Proof of Concept for analysis of existing data from different water monitoring programs 

– practical use can start 
 

Author(s)  Dr. Frederic Béen, Nienke Meekel MSc. 

KWR was commissioned by Rijkswaterstaat to investigate possibilities to analyse data generated from different 

analytical instruments and monitoring programs used to monitor water quality. For this purpose, a uniform, 

scalable and transferable workflow was developed. Two poofs of concept or PoCs were developed: one for high-

resolution data and one for low-resolution data, which allow data analysts (after an extensive demonstration) to 

analyse existing data to detect and identify new emerging contaminants.  

  
 

Importance: more insight into the presence of 

unknown substances 

Samples from the aquatic environment are being 

screened more often and on a larger scale, mainly to 

detect problematic substances, but also to detect the 

presence of previously unknown substances. 

Rijkswaterstaat and other parties have set up specific 

monitoring programs for this purpose. The generated 

data are stored and there is a need to further analyse 

it. This data can, for example, provide more insight 

into the presence of unknown substances in (surface) 

water than can be obtained from individual 

measurements. 

 

Goal: Proof of Concept (PoC) for comprehensive 

data analysis 

KWR was commissioned by Rijkswaterstaat to 

conduct research into the analysis of data from 

various instruments and monitoring programs, with 

the aim of delivering a proof of concept for the 

analysis of chromatographic and mass spectrometric 

data. The focus was to develop a strategy that makes 

it possible to tentatively identify chemical signals 

(features) and to detect relevant (previously 

unknown) features based on their spatial and 

temporal occurrence. This contributes to the 

detection of calamities and of emerging substances 

that are not part of regular monitoring.  

 

Approach: workflows for high- and low-resolution 

data 

Two approaches have been used and thus two PoCs 

were developed: one for so-called low-resolution 

mass spectrometry data (SPE-GC-MS, a widely used 

monitoring technique) and a second one for high-

resolution mass spectrometry data (LC-HRMS, an 

emerging technique that could potentially (partly) 

replace SPE-GC-MS). This was necessary because of 

the differences between low and high-resolution 

data. Thus, two PoCs were developed, sharing a 

general common strategy, both based on a stepwise 

approach:  
(i) input and filtering of the data,  
(ii) normalisation,  
(iii) exploratory analysis,  
(iv) identification,  
(v) validation and  
(vi) reporting. 
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Results: two PoCs for exploratory analysis and 

trend analysis of unknown compounds in water 

With the PoCs for high- and low-resolution data 

respectively, users can process combined data 

according to a unified, scalable and transferable 

workflow. They receive assistance in selecting 

(prioritizing) and identifying relevant features. These 

two PoCs form an initial platform that can be 

adapted and extended based on users’ feedback and 

their specific needs/questions. Implementation in 

practice can be used to determine the practical 

feasibility of this data analysis concept. 

 

Both developed methods ensure that analysis results 

can be compared. With various statistical techniques 

(e.g. PCA, HCA), measurements are grouped and 

deviating samples can be detected. Trend analyses 

can be used to prioritise unknown substances that 

increase or decrease over time. Subsequently, the 

prioritised substances can be tentatively identified by 

screening the mass spectrum with different 

databases. This makes it possible to trace incidental 

calamities and trends.   

 

Application: testing in practice; recommendations 

The developed PoCs are a first step towards the 

application of the analysis of data from different 

monitoring programs or instruments. Both open 

source methods were presented during a closing 

demo. After an extensive demonstration, data 

analysts can use the PoCs in their current state of 

development to analyse existing data to detect and 

identify new emerging contaminants. In a next step, 

users can test the developed strategies, gain 

experience and provide feedback, so that the 

method can be further improved. 

During the development of the PoCs, several 

recommendations were formulated that could 

promote the implementation of this approach. For 

SPE-GC/MS data, this mainly concerns performing 

blank measurements and measurements in triplicate. 

For LC-HRMS data, this mainly concerns a higher 

frequency (more samples in time), so that potential 

trends are easier to detect: a higher measurement 

frequency generally makes the data analysis more 

robust.  

 

Report 
This research is described in the report Final report 
HRMS data science PoC (KWR 2022.053).  
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List of abbreviations & terminology 

BPC   Base Peak Chromatogram 

EI   Electron impact ionization 

ESI   Electrospray ionization 

Feature  Refers to each component or peak (i.e., ion) detected during the analysis and generally 

consists of three parameters, namely its retention time (in minutes or seconds), its 

intensity (i.e., the height or area of the chromatographic peak) and, in the case of high-

resolution mass spectrometry, of its accurate mass. 

GC-MS   Gas Chromatography-Mass Spectrometry 

HCA   Hierarchical Clustering Analysis 

HRMS    High Resolution Mass Spectrometry 

HWL   Het Waterlaboratorium N.V. 

IS   Internal standard 

KWR   KWR Water Research Institute 

LC-MS   Liquid Chromatography-Mass Spectrometry 

MinIenW  Dutch Ministry of Infrastructure and Water Management 

MSC   Multiplicative Scatter Correction 

m/z   Mass-to-charge ratio  

PCA   Principal Component Analysis 

PoC   Proof of Concept 

Rt   Retention time 

Rt-index   Retention time normalised using IS 

RWS   Rijkswaterstaat 

SNV   Standard Normal Variate 

SPE   Solid Phase Extraction 

Spectral Similarity  A function, generally involving the calculation of the scalar product of two vectors, used 

to determine the similarity between two mass spectra.  

TIC   Total Ion Chromatogram  
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1 Introduction 

This project focused on developing a data analysis approach for Rijkswaterstaat (RWS) which can be applied to low- 

and high-resolution mass spectrometry data collected using gas and liquid chromatography (GC-MS and LC-HRMS).  

This project had two major goals with respect to the analysis of data: 

 

(i) development of a strategy that allows to tentatively identify features (i.e., compounds detected during 

the analysis, but which have not been formally identified yet using reference standards); 

(ii) develop a data analysis strategy that allows to detect relevant (and previously unknown) features based 

on relevant temporal and/or geographical patterns (e.g., increasing trends) and tentatively identify 

them. 

Two “proof of concept” (PoCs)1 workflows which achieve these goals were developed, one for low-resolution 

(referred to as instruments which have a mass resolution between 0.5 and 1 Da, in this case GC-MS) and one for high-

resolution (referred to as instruments with a higher mass resolution, in the mDa range, in this case LC-HRMS) mass 

spectrometry data. In fact, as will be discussed in detail below, although similar approaches can be implemented, the 

nature of low- and high-resolution data requires the development of distinct solutions. According to the tender call 

and project proposal, the project consisted of 5 sequential steps, referred to as “iterations”, which are summarised 

in Table 1. 

 
Table 1: Overview of project phases as described in the initial project proposal.  

Project phase/Part Main activities/outcomes Start date End date 

1. Up to the first 
iteration 

 Inventory of data 

 Overview of already available 
strategies/methods/algorithms 

 Define strategy for the workflow 

Q2 2021 Q3 2021 

2. During the first 
iteration 

 Workflow execution 

 First iteration of data analysis 
Q3 2021 Q4 2021 

3. During the second 
iteration 

 Extend data analysis 

 Include temporal and spatial 
component 

 Data & requirements outside RWS 

Q3 2021 Q4 2021 

Go / No Go moment    

4. During the third 
iteration 

 Further extend the data analysis 

 Detection/identification and (ii) 
prioritisation  

 First description of the PoC 

Q4 2021 Q4 2021 

5. After the third 
iteration 

 First complete and working PoC Q4 2021 Q4 2021 

 

It should be noted that due to the circumstances, in particular the fact that high-resolution data was not initially 

available and that it was decided to work on low-resolution data first, deviations were made from the iterations-

based approach detailed in Table 1. Despite these changes, the overall strategy applied, and outputs remained in line 

with the goals described above.   

 

1 It should be noted that in the context of this work, terms such as proof of concept (PoC), workflow or data analysis strategy are used as synonyms, and 

all refer to the development of a data analysis approach allowing to process and evaluate low- and high-resolution mass spectrometry data. Proof of 

concept is being used as a term as this was also mentioned in the initial tender published by Rijkswaterstaat.  



 

 

 

 

 

KWR 2022.053 | May 2022 Final report HRMS data science PoC 6 

2 Low-resolution GC-MS analysis 

2.1 Objective 

The PoC which was specifically developed for GC-MS data focused on the development of a strategy to import, 

process and analyse data with the goal of detecting samples which deviate from normal patterns (e.g., calamities) 

and the features which might be causing the observed deviation, as well as to (tentatively) identify them using existing 

databases.  

2.2 GC-MS data 

The developed PoC for low-resolution GC-MS data relied on data collected from the monitoring stations of Bimmen 

and Lobith (located along the river Rhine). Both locations are equipped with an online solid-phase extraction  

(SPE-)GC-MS instrument. Water samples are collected over 12 hours (composite) and then an aliquot is extracted 

with SPE and analysed. Prior to analysis, samples are spiked with 8 stable isotopically labelled internal standards (IS), 

which are used for quantification and quality control. These play an important role in the development of the PoC 

(see Annex III for a list of the used internal standards). It should be noted that, for unknown reasons, not all internal 

standards could always be found in the chromatograms. Consequently, there are instances in which the PoC was 

implemented using a selection of IS. Furthermore, solvent or procedural blanks (i.e., including of the SPE system) 

were not available. As will be discussed further, this has important implications for the developed strategies and 

should be included in future. 

2.3 Data analysis strategy 

A multi-step strategy was developed for the processing and analysis of the data. This approach is based on commonly 

implemented strategies used to process and analyse large amounts of mass spectrometry data (1,2). An overview of 

the approach is illustrated in Figure 1. The various steps are described in more detail in the following paragraphs. The 

entire data analysis strategy described in this report was developed using R 4.0.2 (R Core Team, 2020) and  

RStudio (3) and several packages, which are described in Annex V.   

 

Data analysis in mass spectrometry commonly uses the term “feature” which is used to refer to ions (i.e., molecules) 

detected during the analysis. A feature generally consists of three elements, namely its chromatographic retention 

time (Rt), its intensity (either peak area or height) and, in the case of HRMS instruments, its accurate mass.  
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Figure 1: Overview of the data analysis strategy. PCA = principal component analysis; HCA = hierarchical cluster analysis 

2.3.1 Input and filtering 

The first step consisted of selecting relevant chromatograms from the large amount of data available. In fact, given 

that data is collected with an online system, not all recorded chromatograms are relevant (i.e., some of the data 

refers to calibration standards, controls, etc. which are not relevant for the development of the PoC). For filtering 

purposes, KWR uses the “Qxmax file”, an inventory of all analyses done by the instrument and which allows to 

distinguish samples from other (not relevant) data files.   

Data was imported using the R-package Rawrr (4), which has been developed to import and read .raw files created 

by instruments of the brand Thermo Fisher Scientific (brand of the online GC-MS system used by RWS). The package 

is open source (as are all packages developed for RStudio). Alternative packages, such as XCMS (5) and enviGCMS (6), 

are available for the import and (pre-)processing of data generated with instruments from other manufacturers. The 

import and filtering steps were implemented in a fully functional R script that allows for raw online SPE-GC-MS data 

to be imported and converted into a format that can be used in RStudio. Below, an example of a chromatogram 

imported with the Rawrr package is illustrated (Total Ion Chromatogram (TIC; left) and base peak plot (BPC, right)), 

which were visualized using the developed script in RStudio (see Figure 2). 

 

1. Input & 
filtering

•Selection criteria

•Quality

2. 
Normalisation 

•Retention time (Rt) 
correction

•Blanks

•Normalisation (IS)

3. Exploratory
analysis

•Feature selection

•PCA & HCA

•Time series analysis

4. Identification •Database research

5. Validation 

6. Reporting
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Figure 2: Illustration of an imported chromatogram (TIC, left) and a base peak plot (right). The latter corresponds to the most intense ion (i.e., 

m/z) detected at each point of the analysis. Both TIC and BPC have been made with the above-mentioned R-script and the Rawrr package.  

2.3.2 Normalisation 

Prior to data analysis, in particular to identify temporal and/or geographical patterns, it is crucial to ensure that 

variability in data is solely due to actual differences in sample composition and are not due to instrumental variability 

(e.g., natural fluctuations in detector response, ageing of the chromatographic columns, maintenance). Although the 

influence of external factors cannot be completely excluded, it is important to minimize it so that true patterns can 

be detected. In the specific case of MS data (both low and high-resolution), two main factors caused by instrumental 

variability can affect the results, namely changes in retention time (Rt) and intensity (or peak area). In the case of 

high-resolution data, deviations in the measurement of the accurate mass of detected features (also referred to as 

“mass drift”) is a third important instrumental factor which needs to be accounted for. In the specific case of low-

resolution data, this is considered less of an issue as potential errors in measured masses are assumed to fall within 

the accuracy of the instrument. Compared to high-resolution mass spectrometry, normalisation is more complex 

when working with low-resolution data, in particular, because it lacks information about the accurate mass of the 

detected features, which can be used to align chromatographic signals. In the case of low-resolution data, alignment 

has to be applied to the whole signal (or Total Ion Chromatogram, TIC) before features can be selected for further 

analysis. This is an important difference which substantially complicates the alignment process of low-resolution data.  

 

2.3.2.1 Retention time correction 

To correct for shifts in retention time (Rt), which can occur due to random variations caused by the chromatographic 

separation, and ensure that only true differences in data are detected, an approach based on the calculation of 

retention time indexes was implemented (7). For this purpose, the retention times of internal standards (present in 

each chromatogram) were retrieved and used to calculate Rt-indexes for all detected features. This is done using the 

following formula (derived from the original approach developed by Kováts (7)): 

 

��� = ��� +
(��� − ���)

(���
� − ���

� )
(��� − ���

� ) 

 

where  ��� corresponds to the corrected retention time, which is calculated from the original retention time (���), 

fixed retention times for the internal standards ��� and ��� (derived from a user defined reference chromatogram) 

and the measured (actual) retention times from the internal standards ���
�  and ���

� . This non-linear approach was 

implemented per window, meaning that the Rt-index of each feature in the chromatogram was calculated using the 
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closest two internal standards (eluting left and right of the feature in question). Figure 3 illustrates the impact that 

retention time correction has on a chromatogram.  

Because this approach relies on the Rts of internal standards, these have to be obtained for each chromatogram. 

However, due to the large amount of data available, this cannot be done manually. Hence, a dedicated algorithm was 

developed, allowing to automatically retrieve the Rts of all internal standards in each chromatogram. The algorithm 

relies on the specific MS-spectrum of the internal standard. In particular, a reference MS-spectrum, the expected Rt 

of the internal standard and a Rt search window are defined by the operator. Based on the parameters provided by 

the user, the algorithm uses a spectral similarity function (i.e., generally the scalar product, which allows to calculate 

the similarity between two mass spectra) to find which of the recorded spectra in the window matches the one 

defined by the user.  

 

 
Figure 3: Illustration of an original TIC (top) and a retention time corrected TIC (bottom) using the retention times of the internal standards. 

 

In addition to this ad-hoc approach, KWR investigated the possibility of implementing alternative approaches to 

correct for retention time shifts, namely "step-wise alignment" and "dynamic time warping". However, when 

compared to the IS-based approach, it becomes clear that the latter two approaches are less adequate. The reason 

for this is that these approaches use a reference signal to correct for retention time shifts and are less capable of 

accounting for large shifts as the ones observed in the available data. These two alternative techniques are more 

useful when chromatograms to be aligned have been measured in the same run and are hence affected only by 

limited Rt shifts, or in cases where no internal standards are available. However, the data which is being considered 

here covers multiple years and observed Rt shifts can be substantial (> 2 minutes for the same IS) and there is no 

adequate reference signal to be used.  

 

The use of Kováts retention time indexes is also an interesting alternative (7). This approach relies on the same 

equation presented above but uses pre-defined alkanes as reference standards to calculate corrected Rt (instead of 

mass labelled reference standards as implemented here). However, these reference alkanes need to be analysed at 

regular intervals to determine their Rt, which is not part of the method currently used by RWS to monitor water 

quality in Bimmen and Lobith. For future analyses and optimisation of the SPE-GC-MS method, KWR strongly advises 

RWS to include the measurement of reference alkanes at regular intervals, as the obtained Rt-indexes can also be 
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used for identification purposes. For the sole purpose of alignment, however, the use of alkanes has no added value 

compared to the IS-based approach implemented here.  

 

2.3.2.2 Intensity normalisation and baseline correction 

The second step in the process comprises intensity normalisation and baseline correction. This step is important 

because baseline shifts (i.e., changes in the overall intensity of a chromatogram) can occur due to the status of the 

instrument, in particular column ageing and detector sensitivity, or the composition of the matrix. For this purpose, 

various approaches have been implemented, such as standard normal variate (SNV) and multiplicative scatter 

correction (MSC). The former is a straightforward “centre and scale” approach, while the latter uses a reference 

chromatogram to correct for intensity and baseline shifts. However, as mentioned previously, the use of reference 

signals in the context of this data might be problematic. These approaches were compared but none of the two 

seemed to outperform the other. Therefore, both approaches were implemented in the PoC and it is advised to select 

the best approach case by case, depending on the dataset and by testing the grouping/outputs obtained with each 

approach. An example of an intensity normalised chromatogram is shown in Figure 4. 

 
Figure 4: Illustration of a TIC (top) and a binned and MSC corrected TIC (bottom). 

 

In addition to intensity normalisation, it is also important to take into account potential baseline shifts. For this, 

various algorithms have been developed which rely on polynomial fitting or weighted local smoothers (8). These were 

tested, combined with the different intensity corrections. Results showed that these did not have large effects on 

the datasets used here. However, all algorithms mentioned have been included in the PoC in order to let the user 

decide whether to apply them or not, depending on the nature of the data and the outcomes of the exploratory 

analysis (see 2.3.3). In particular, their effect on the grouping and calamity detection should be used to select the 

most appropriate technique.  

 

2.3.2.3 Flow normalisation 

Intensities of detected features are also dependent on the water flow rate (volume per unit of time) at the sampling 

points, which can cause decreases (dilution during wet seasons) or increases (concentration during dry seasons) in 

the concentration of chemicals in the collected samples. In the context of this work, it was not possible to include 

flow data due to time restrictions. However, these should be included in future updates of the developed approach 
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as they can improve the interpretation of the data and, in particular, help detect the occurrence of calamities or 

interpret temporal changes. Ideally, mean 12h flows should be included as this corresponds to the sampling 

frequency used in this particular case. Finally, the collected samples should be 12h flow- or volume-proportional 

composites, to account for changes in flows during the sampling period. Nevertheless, in an ideal case, the operator 

would evaluate raw concentrations, mass loads and flows to determine whether the observed trends are due to an 

actual increase in a given feature, for instance, or whether their due to changes in flow rates and/or seasonal effects 

(e.g., increased used of certain compounds during a specific season). 

 

2.3.2.4 Data pre-processing and transformation 

Depending on the type of data and application, additional pre-processing might be necessary to further optimise the 

detection of specific patterns during the exploratory data analysis (point 3 of the established strategy shown in Figure 

1). For this purpose, various steps were considered, such as smoothing using a Savitzky–Golay filter, which is 

commonly used in signal processing to smoothen data, followed by data transformation to 1st or higher-order 

derivatives (9). The selection of the most appropriate pre-processing technique is generally done using a cross-

validation approach, in particular if the goal is to classify samples based on similarities in the chemical profile (e.g., 

chromatographic and mass spectrometric data). However, in this case, no prior knowledge about groups is available 

and the selection of the most appropriate pre-processing technique was done based on the detection of known 

calamities (see 2.3.5 for more details about this point). Based on the outcomes of the validation step, it was decided 

to implement all pre-processing techniques in the PoC in order to let the user decide what pre-processing techniques 

suit the dataset best. For example, if the main interest goes out to compounds at low concentrations, or low ionisable 

compounds, smoothing might not be suitable since this will smoothen out these peaks. 

 

2.3.3 Exploratory analysis 

2.3.3.1 Principal component and hierarchical cluster analysis 

Exploratory data analysis is focused on the application of various pattern recognition algorithms to identify features 

of interest. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) are two commonly used 

approaches to reduce data dimensionality and facilitate the detection of groups based on underlying patterns in the 

chemical signal (in this case their chromatographic and mass spectrometric profile). These visualization steps help to 

interpret the data. A more detailed explanation about PCA and HCA is given in box below. In this context, the idea of 

using these algorithms is that they create groups/clusters among a large set of samples, highlighting in particular 

outliers (e.g., calamities), and they help determine which feature(s) is/are causing the differentiation. The latter 

features are then selected for further analysis and eventual identification. The advantage of these two methods, and 

of other unsupervised algorithms, is that they do not require any prior information about the data and are hence 

ideal to detect unknown or unexpected patterns in datasets.  
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Principal Component Analysis (PCA). PCA is data a technique to reduce data dimensionality and can be used to 

visualize large datasets and their patterns. In fact, analytical instruments (e.g., mass spectrometry, infrared 

spectroscopy) often measure a large number of variables (e.g., the intensity of masses ranging from 30 to 330 m/z 

as is the case here), which are difficult to visualise in a 2 or 3 dimensional space. PCA is used to do just that, namely 

to reduce the number of dimensions and be able to visualise the data using only few dimensions (referred to as 

Principal Components (PCs)) and determine whether groups (i.e., samples characterised by similar chemical signals) 

are present in the data. PCs are calculated by linear combinations of the original data and are supposed to capture 

as much as possible of the variance in the original dataset. A PCA biplot (see the example figure below) shows clusters 

of samples based on their similarity, so if a sample is far away from the others, it has distinct properties (i.e., chemical 

signal, such as a mass spectrum or a chromatographic profile). If samples are close to each other, they have similar 

properties. Samples with deviating peaks like calamities or emerging substances are expected to form separate 

groups. Features/peaks that are responsible for these grouping can be examined further, using loadings. The higher 

the loading, the more important this variable (in this case a feature or a peak) is for the group.  A biplot is a way of 

visualizing PCA results, as shown in the figure below. The x- and y-axis represent the first two PCs, i.e. the two 

directions that cover the largest amount of information of the data. Samples are represented by dots and the 

different colours indicate the group to which each sample belongs. The blue lines represent the loadings of the data 

set, so the different variables and what effect they have on the distribution of the data. 

 

 
Figure 5: Biplot figure in the box obtained from (10) 
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Hierarchical Cluster Analysis (HCA). HCA can be used in addition or as alternative to PCA. It is a different technique 

but the goal remains the same: identifying groups and subsequently identification of the variables (in this case 

features or peaks) that cause the grouping. Samples are grouped based on similarities among them and no 

dimensionality reduction takes place, in contrast to PCA. Samples with deviating peaks will be grouped separately, 

like in PCA. The results can be visualized using a heatmap, as shown in the figure below.  In this example, the x axis 

represents the different variables (in the context if this work that would correspond to the features and the colouring 

would reflect their intensity), the y-axis represents the different samples. Both dendrograms on top and at the left 

visualize the results of the cluster analysis, namely which samples belong to the same group (which can be 

determined when looking at the left dendrogram) and which features belong to the same group (which can be 

determined by observing the dendrogram on the top). Each time there is a split in the dendrogram, two separate 

groups are formed. The higher the splitting, the larger the differences between groups. In the example below, for 

instance, the first two samples (marked in green on the left side of the heatmap) are separated at a high level from 

the rest of the samples, meaning that these are the most different samples compared to the rest. The next group 

which can be separated are the samples marked in red, and so forth. This allows to determine which groups are 

present in the data set. Then, by looking at which features (vertical lines) are abundant (or vice versa) in a specific 

group, it is possible to determine which features are responsible for the separation. Going back to the example of 

the samples marked in green, one can clearly observe that features on the right side of the heatmap are particularly 

abundant in this group. In fact, the colours represent the intensity (red = high, blue/green = low). 

 

 
Figure 6: Heat map taken from (11) 
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An example of the application of PCA to the data used in this project is shown in Figure 7. As can be seen, samples 

(i.e., chromatograms) are plotted against the calculated value of the first two principal components (PCs). What is 

immediately visible is that there are at least three samples (i.e., 180902_LOB_06, 180902_LOB18 and 

180912_LOB_12) which are clearly separated from the rest. In addition to plotting the two PCs, it is possible to include 

information about which features influence the observed separation the most. These are represented by the arrows 

shown in Figure 7 (the number indicating the Rt of the feature in question). This plot hence allows the operator to 

quickly identify if there are samples which strongly deviate from the rest and to get an idea of which features are 

involved. In Section 2.3.5, a detailed explanation of how information can be derived from heatmaps/HCA is provided.  

 

 

 
Figure 7: Example of a Principal Component Analysis biplot (combination of PCA score plot and loading plot) of 60 chromatograms (September 
2019)  processed as described above. Chromatograms (red dots) are plotted against their PC1 and PC2 values and the black arrows represent 

the most significant features which separate the data across the two PCs. The number plotted next to each arrow is the Rt of the feature in 
question. As can be seen, there are three samples which can be clearly distinguished from the rest of the dataset. The purpose of the PCA is 
exactly to determine whether such “very different” samples are present in the data.   

 

 

 

2.3.3.2 Unsupervised machine learning algorithms 

The use of additional unsupervised classification algorithms, such as Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) or Self-Organising Maps (SOMs), were initially contemplated as a complement to PCA and HCA. 

However, based on finding from the validation step (see 2.3.5), it was decided that these were currently not necessary 

as satisfying results were obtained with PCA and, in particular, HCA.  
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2.3.4 Identification 

After potentially relevant features have been detected through the exploratory data analysis, they need to be 

(tentatively) identified by comparison with existing spectral libraries. For this purpose, it is first necessary to retrieve 

the mass spectrum of the selected features. An algorithm was written which allows the user to select a feature of 

interest and, by back-calculating its original retention time (given that all features were aligned using Rt-indexes (see 

2.3.2.1)), obtain its mass spectrum at the specific retention time specified by the user. The latter is then exported in 

text format (i.e., .txt) and can be used to search in spectral libraries such as MetFrag (12), NIST (13) and MassBank 

(14). 

2.3.5 Validation 

As detailed in the previous paragraphs, the developed PoC involves various steps and data processing approaches 

whose goal is to improve the detection and identification of relevant features. However, the selection of the most 

effective set of pre-processing strategies and guaranteeing that no unwanted artifact is being introduced in the data 

is crucial. For this purpose, developing a validation strategy is essential. In a conventional classification or pattern 

recognition approach, validation would be performed using a test set, which consists of a subset of the data not used 

for training purposes and solely serves to test the developed model/algorithm.  

 

In this case, however, given that the goal is to detect samples which might contain features indicative of a pollution 

event, the optimization of data pre-processing and pattern recognition was done using known historic data of 

calamities. More specifically, chromatograms of samples which are known to contain specific compounds, linked to 

known pollution events, were randomly introduced into a subset of the whole dataset. These were then used to 

determine whether the developed PoC could highlight their presence (i.e., whether they could be labelled as specific 

groups within PCA and/or HCA) and whether a positive identification could be achieved based on the comparison of 

their MS-spectra with existing databases.  

 

2.3.5.1 Aniline 

The first calamity selected for validation was an increased concentration (up to 6 µg/L) of aniline in the river Rhine. 

Specifically, 67 chromatograms from samples collected in Bimmen and Lobith in November 2019 were used. These 

chromatograms were processed as described above and an HCA was performed and the results were plotted in a 

heatmap (Figure 8). As described above, each horizontal line represents one chromatogram, while each vertical line 

represents a feature (the color gives an indication of the intensity of the feature). The left-hand side of the heatmap 

also shows a dendrogram, which simply illustrates the groups that were made (i.e., samples are grouped together 

when they are characterized by a similar chemical signal or, in other words, when they all have a similar set of features 

at similar intensities). A closer look at the groups of samples that we made shows that a set of six chromatograms 

(shown at the top of the heatmap) is clearly separated from the rest of the dataset and that this group of samples is 

characterized by a particularly intense feature (marked by the black circle in Figure 8). By retrieving the mass 

spectrum of this feature and by comparing it with the MassBankEU database, one obtains a match with aniline with 

a similarity score of 0.9817 (as calculated by MassBankEU). This can be also confirmed by visually inspecting the two 

mass spectra, as shown in Figure 9. 
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Figure 8: Heatmap of a Hierarchical Cluster Analysis (Euclidean distance, max normalised) of Bimmen and Lobith data from November 2019, after 
alignment based on IS, binning and normalisation using MSC, the solvent peak (t0) and internal standard peaks were excluded from the TIC’s 
before conducting HCA. The highlighted features in the figure correspond to aniline. Each line represents a sample (i.e., chromatogram), where 

the x-axis represents the retention time (i.e., feature). The colour scale indicates signal intensity. The goal of this heatmap is to illustrate the 
grouping of samples made based on similarities in their chromatographic profile and illustrate (through the colour gradient) which features differ 
between the groups.   

 

 
Figure 9: MS spectra of Aniline as found in MassBankEU (top, SPLASH: splash10-00kf-9000000000-9a543eee5081cc927e82) and the measured 

MS spectrum (bottom). 

 

2.3.5.2 Phenol 

The second calamity selected for validation was an increased concentration (1.4 µg/L) of phenol in the river Rhine. 

The analysed dataset consisted of all 60 measurements in Bimmen and Lobith of that month, September 2018. 

Similarly, to the previous example of aniline, HCA was performed and the results were plotted as a heatmap which is 

shown in Figure 10. Also in this case, a specific group containing only one sample is made. Contrarily to the previous 

example, however, the separation of this group from the rest of the dataset occurs at a lower level, which makes it 

http://www.google.com/search?q=splash10-00kf-9000000000-9a543eee5081cc927e82
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less obvious to detect this calamity compared to the case of aniline in which 6 samples were immediately separated 

by the rest of the group. Nevertheless, one can clearly see that this sample is one of the few in the entire dataset 

which contains a very intense feature in the first part of the chromatogram (marked in blank in Figure 10). By 

retrieving the mass spectrum of this feature and by comparing it to MassBankEU, as done previously for aniline, a 

match with phenol at a similarity score 0.9776 (as computed by MassBankEU) is obtained. This can be also confirmed 

by visually inspecting the two mass spectra, as shown in Figure 11.  

In this specific dataset, additional high-level groups can be observed (in particular at the top of the heatmap). When 

analyzing this kind of data, it would be very interesting to focus on these groups and try to and identify the features 

which are responsible for this separation. For instance, a group characterized by intense features which repeat at 

regular intervals is clearly visible in the heatmap. Given their repetitive nature, these features could be a part of 

homologues series of chemicals which only differ in size (e.g., length of an alkyl chain).  

 

 
Figure 10: Heatmap of an Hierarchical Cluster Analysis (Euclidean distance, max normalised) of Bimmen and Lobith data from September 2018,  

after alignment based on IS, binning and normalisation using MSC, the solvent peak (t0) and internal standard peaks were excluded from the 
TIC’s before conducting HCA. The highlighted features in the figure correspond to phenol. Each line represents a TIC, where the x-axis represents 
the retention time. The color scale indicates signal intensity. The goal of this heatmap is to illustrate the grouping of samples made based on 

similarities in their chromatographic profile and illustrate (through the colour gradient) which features differ between the groups.   
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Figure 11: MS spectra of Phenol as found in MassBankEU (top, SPLASH: splash10-00kf-9000000000-6fb456992902a13931f9) and the measured 

MS spectrum (bottom). 

 

2.4 Outcomes of the validation and recommendations for using the PoC with low-
resolution data 

The validation showed that using the developed approach, it is possible to highlight the presence of specific 

compounds (i.e., calamities) and to identify them using existing spectral libraries. However, in both cases, it is clear 

that the chances of detecting a new compound/calamity strongly depend on the number of samples that are being 

processed simultaneously and the amount of background noise present in the chromatograms. In the first case, 

findings from tests run by KWR suggest that the analysis should be performed using one month's worth of samples 

(i.e., approximately 60 chromatograms) at most. Ideally, one would want to perform the analysis with fewer samples, 

for instance one or two weeks. This would avoid having too much information being represented in a single 

heatmap/PCA plot. In fact, it is clear from the outcomes of the validation that, although the features related to the 

calamities were grouped separately from the rest of the samples, there is still a large amount of information present 

which could complexify the interpretation. This is particularly true for features which appear in few or just one 

chromatogram (as is the case for phenol). On the other hand, however, it is possible that large discharges might be 

visible in samples collected over longer periods (days or weeks). In these cases, one might need broader time 

windows to observe the increase and then the decrease of one or multiple previously unknown features. It is hence 

important to analyse the data using different time windows to make sure that both short- (i.e., acute) and long-lasting 

(i.e., large disposal) events can be detected.  

 

Regarding the background noise, inclusion of blanks which can be used to remove parasite peaks is highly desirable. 

Furthermore, noise removal would most likely also benefit the data analysis as a larger number of samples can be 

processed and visualized as only relevant features would be included. In fact, based on experience from other 

screening methods indicates that the number of relevant features can be reduced substantially by removing signals 

present in the blanks (e.g., 50% or more in the case of LC-HRMS analysis).  

  

http://www.google.com/search?q=splash10-00kf-9000000000-6fb456992902a13931f9
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2.5 Recommendations for the improvement of the SPE-GC-MS method 

Following the analysis of the SPE-GC-MS data, it was possible to identify three points in the current method(s) used 

by RWS that can be improved in future. Firstly, the measurement of blanks (either solvent or, ideally, procedural 

(SPE) blanks) at regular intervals needs to be included in the monitoring scheme. Blanks are essential to ensure that 

no contamination or carry-over is taking place and play an important role in the development of any automated data 

analysis strategy. In addition, they would allow improving the data analysis approach as irrelevant features would be 

filtered out and more samples could be analysed simultaneously. Currently, the data analysis can still be performed, 

however the absence of blanks serious complexifies the detection of calamities or new contaminants, in particular, 

if these are present at low concentrations. In fact, the operator will need to interpret the outcomes of the exploratory 

analysis very carefully as potentially relevant features might be present at intensities comparable to the background 

(which would have been removed if blanks were available). Secondly, alkanes should be measured at regular intervals 

to allow the calculation of Kováts retention indexes for normalisation and identification purposes. Finally, the analysis 

of replicates could also help improve the data analysis as artefacts and/or non-reproducible features could be 

excluded (as is done for the LC-HRMS data, see 3.4). 

2.6 Perspectives for future applications 

A data analysis strategy was developed allowing to import, process, evaluate online SPE-GC-MS data and identify 

features of interest. The approach was developed using data generated by a Thermo Fisher Scientific instrument, 

however, the goal of the PoC is that it can be used with data from any manufacturer. Although the developed 

algorithms can be used with data from any manufacturer, there are a number of aspects that will always need to be 

customized given that different laboratories and/or instruments will provide slightly different data. In particular, the 

following aspects will need to be customized prior to implementation of the PoC in another laboratory: 

 

1. Import and conversion of data to a usable format. This is rather straightforward and there are numerous 

packages, depending on the manufacturer, which can be used to convert proprietary raw files to open-

source formats such as mzML.  

2. Criteria to select relevant chromatograms. As described previously, this is currently being done using the 

Qxmax file inventory. Another laboratory might have a different approach to record which data represents 

a sample and which not. However, assuming all samples are measured using the same method, minimum 

information requirements are: sample name, file location, sampling date and time, analysis date and time, 

corresponding blank and the applied ionization mode (i.e. positive or negative).  

3. Information about internal standards. Laboratories are likely to use different internal standards and/or 

methods, hence the retention time of internal standards needs to be retrieved (using the developed 

algorithm) and the normalisation step needs to be updated (Rt-indexes of features need to be computed 

using retention time windows specific to the method in question). Furthermore, mass-labelled internal 

standards should always be preferred where possible.  

4. Information about methods used. Different method parameters (e.g., gradient, oven program, run time, 

injection volume, chromatographic column and maintenance) will lead to different results, which might 

hinder the comparison of data from different methods. The current GC-MS PoC is not yet cross-compatible 

between different instruments. This issue can partly be solved by using Rt-indexes (e.g., Kováts retention 

indexes), however differences will most likely always exist between different methods/laboratories. Detailed 

records of maintenance should also be kept to help interpret findings.  
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5. Availability and usability of blank samples. Subtraction of features that occur in blanks is currently not 

included in the developed PoC as these were not available. In future versions of the PoC, this can easily be 

implemented.  

Despite the abovementioned points, which will need to be adapted/optimized for each new method/laboratory, 

there are a number of elements which are universal and independent of the method used, namely: 

- Type of samples: the developed approach can be implemented regardless of the type of samples and sample 

processing technique which is being used. In this specific case, samples were processed with SPE prior to 

analysis. This is however not a requirement as the sample type or preparation does not affect the data 

analysis used here.  

- Sampling frequency: the data used to develop the PoC was collected at very high frequency (i.e., one sample 

every 12h), however, this is once more not a requirement as the approach can be implemented with much 

smaller datasets without any change needed. However, should the goal be to identify specific spatial or 

temporal trends, then it is important to have sufficient data to guarantee that external factors (e.g., seasonal 

effects, noise) can be accounted for.   

- Real-time applications: currently, the PoC was developed using historical data (2016-2021) provided by 

RWS. However, in its current design, the PoC can be implemented also for real-time applications, in the 

sense that newly analysed samples can be immediately processed and compared to previous samples.   
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3 High-resolution LC-HRMS analysis 

3.1 Objective 

The PoC which was specifically developed for LC-HRMS data focused on the development of a strategy to import, 

process and analyse data with the goal of detecting samples which deviate from normal patterns (e.g., calamities) 

and the features which might be causing the observed deviation, as well as to (tentatively) identify them using existing 

databases. However, in this case, specific attention was given to developing an approach which allows to analyse 

time trends as this was not implemented for GC-MS data, due to the absence of LC-HRMS data at the beginning of 

this project and consequent time constraints.   

3.2 LC-HRMS data 

Although significantly different from HRMS data, the work that was performed on low-resolution data has allowed 

us to define an overall strategy which can be implemented also for HRMS data. The major difference between low- 

and high-resolution data is that the latter is substantially easier to pre-process. As discussed above, accounting for 

retention time shifts in high-resolution data is less complex because of the increased specificity that accurate mass 

information offers. In fact, this can be used to easily detect and group features across numerous chromatograms 

without the need to first align the whole signal. Furthermore, a larger and more comprehensive set of data analysis 

packages exists for HRMS compared to low-resolution data. One point, however, where HRMS-data is more complex 

is the identification step, in particular if data has been acquired using liquid chromatography coupled to HRMS (as is 

the case here). In fact, the ionization in such instruments, which mainly occurs using electrospray ionization (ESI), is 

substantially less reproducible and standardized compared to electron impact (EI), which is used in GC-MS 

instruments. Hence, the comparison with existing databases is less obvious and an expert operator is still required to 

evaluate whether there is a true match between the experimental MS and the one from the database. Finally, 

databases are far from being comprehensive, thus the risk that a detected feature might not be identifiable through 

available databases is non-negligible.  

 

High-resolution data was not available at RWS and hence had to be retrieved from other laboratories. Het 

Waterlaboratorium (HWL), which is a member of the supervisory board of this project, indicated that it had sufficient 

HRMS data to perform the tasks as described in the project plan. An official request from RWS/MinIenW was made 

to HWL to provide HRMS data. For this purpose, KWR established a detailed list of requirements that HRMS data 

should fulfill in order to be able to develop the described PoC also for this kind of high-resolution data (memo of 

Frederic Béen, 4th October 2021). On 6th January 2022, HWL provided data which fulfilled the requirements. For the 

data analysis of LC-HRMS data, it was decided to develop the PoC using the existing, internationally widely used 

package ‘patRoon’ (15) developed by the University of Amsterdam. One of the advantages of patRoon, besides the 

fact that it has been implemented by numerous research groups across the world, is that it is a platform which makes 

use of various validated and commonly used algorithms and packages used to process HRMS data. In addition, KWR 

has extensive knowledge in the use of this package (and has been directly involved in its development).  

 

The data consisted of 68 measurements of surface water samples from 3 locations (Lekkanaal/Rhine, Meuse and 

IJsselmeer) over a 2-year period. All samples, including procedural blanks, were measured in triplicate in both positive 

and negative ionization mode. Samples and blanks were all spiked with internal standards, as given in Annex IV. Data 

was acquired with a Bruker Daltonics maXis series Impact II micrOTOF mass spectrometer, using a quadrupole mass 

analyser and electrospray ionization. The total runtime of the chromatogram was around 20 minutes. Mobile phase 

A consisted of 95% 5mM ammonium formate in 5% MeOH and mobile phase B consisted of 5 mM ammonium 
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formate in MeOH. An example of two chromatograms (TIC) is shown in Figure 12. In this proof of principle, only data 

acquired in the positive ionization mode was considered. 

 

 
Figure 12: Two TICs of a sample from the river Meuse, in negative mode (top) and positive ionization mode (bottom). 

3.3 Data analysis strategy 

Globally, the strategy implemented for high-resolution data follows similar steps as those illustrated in Figure 1, and 

described in Section 2, except for some of the details related to importing (step 1) and normalisation (step 2) which, 

as will be described in detail in the following sections, differs due from low-resolution data due to the fact that 

information about accurate mass is available. With respect to the actual data analysis steps, PCA and HCA were 

implemented for LC-HRMS as previously done for GC-MS data, however, additional emphasis was put here on the 

development of the trend analysis which was not included in the GC-MS data due to time constraints and also 

because LC-HRMS data was not initially available.  

3.4 (Pre)processing 

3.4.1 Re-calibration  

Given that data was acquired using a Bruker instrument, re-calibration was necessary prior to exporting the raw data 

as this instrument uses an external calibration. In agreement with HWL, this step was kindly performed by the 

University of Amsterdam as proprietary Bruker software is required and KWR does not have access to such software. 

Not having worked directly with raw Bruker data before, KWR was not aware of this step. In future, if data from 

Bruker has to be processed, then re-calibration needs to be carried out before exporting the raw data.  
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3.4.2 Feature detection and grouping  

Next, the re-calibrated data was converted to the open format mzML, using the ProteoWizard msconvert tool(16), 

embedded in patRoon (15). Subsequently, features were generated using the OpenMS (17) software, also embedded 

in patRoon. The resulting features were filtered to exclude all features eluting before or during the solvent peak. In 

the specific case of the data provided by HWL, a threshold was set at 180 seconds. The remaining features were 

grouped and aligned using the OpenMS algorithm. More specifically, features in different samples having accurate 

mass, isotopic pattern and retention time within a defined threshold were considered to be the same feature. 

Thresholds used for grouping are reported in the PoC script and users can modify them based to the instruments 

used and the type of data being analysed. Features which were not present in all replicates and/or features whose 

relative standard deviation of the intensities within triplicates was above 75% were removed. Once more, these 

criteria can be modified by the users in the PoC script. This is a standard procedure done to remove features which 

are likely artefacts, not reproducible or related to background contaminations. A downside of these steps is that the 

risk of losing relevant features is posed, such as features eluting prior to or within the solvent peak 

 

The steps described above were performed using patRoon’s default settings. It should be noted that these 

parameters can be further optimized if deemed necessary using a design of experiments approach embedded in 

patRoon. In fact, m/z and retention time thresholds have a significant impact on the outcomes of feature grouping. 

This is shown in Figure 13, where in the first 180 analyses, the internal standards atrazine-d5 is labelled as being 

feature group ‘M221_R547_5652’, while this same group does not contain any feature in the subsequent 72 analyses. 

In these subsequent 72 analyses, an additional group, labelled ‘M221_R560_5653’ was present having the same m/z 

but with a retention time shift of on average 13 seconds. Tweaking the retention time threshold allowed for all 

features related to atrazine-d5 to be grouped together (i.e., ‘M221_R550_5692’). The fact that these groups all 

contained atrazine-d5 was confirmed by inspecting the MS2 spectra of the feature (see Figure 14). 

 
Figure 13: Chromatographic data of feature group ‘M221_R550_6592’, every line is a measurement. The left peak is generated by the data from 
the first 180 analyses, whereas the right peak is from the other 72 analyses. 
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Figure 14: Average MS2 peaklist obtained using the mzR algorithm, for the feature group ‘M221_R550_5692’ 

 

A similar situation was observed for other IS, for example neburon, which was attributed to two feature groups with 

a retention time difference of ± 11.9 seconds. The shift occurred between the same sample sets as for atrazine-d5, 

attributed to a different analysis batch. These examples show that setting grouping parameters is important and that 

the use of internal standards is highly valuable also for HRMS data to ensure that features are being grouped (i.e., 

aligned) correctly. This is particularly important when comparing data from samples that have been analysed at 

different times. In fact, as for GC-MS data, retention time shifts can occur due to random variability but also due to 

column ageing or slight differences in eluents or ageing of the HPLC seals or other factors.  

3.4.3 Noise removal and blank filtration  

 

Grouped features (also referred to as feature list) were converted into a data frame and feature intensities were 

normalised (i.e., divided) by the intensity of atrazine-d5. This should in the future be extended to all available internal 

standards and feature intensities should be normalised per retention time windows, as done for the SPE-GC-MS data. 

Due to time constraints, this could not be implemented at this stage. Nevertheless, the decision of whether or not to 

normalize the data using internal standards will remain to the description of the operator, based on the effect that 

this step has on the outcomes. In fact, it cannot be excluded that this approach might introduce artefacts due to local 

ion suppression or enhancement. However, this issue is present even without IS-normalisation as features across 

different samples might have different intensities at equivalent concentrations due to different matrix effects. For 

this reason, one would ideally use a sufficient number of IS covering the whole chromatogram.   

 

Subsequently, an intensity filter was applied. Namely, all features whose intensity was <10% of that of the internal 

standards were removed. Generally, in HRMS data analysis workflows, features whose intensity falls below a certain 

threshold (e.g., 50k to 500k counts depending on the type of sample being analysed) are filtered out to remove 

noise/background peaks. However, this approach is generally used when samples were analysed in one sequence 

(i.e., all at the same time). In this case, however, analyses were carried out at different times and it cannot be assumed 

that the background will be the same across all samples. Hence, it was decided to remove features based on their 

intensity relative to the internal standards (as the latter was analysed in all samples and should allow taking 

instrumental variability into account). Subsequently, the remaining features were averaged for all triplicates in order 

to have one intensity per feature group per sample. Afterwards, blank correction was performed by removing all 

feature groups with intensities < 5x intensity in the blank samples. Similarly to the previous step, this is a common 

step that allows to reduce the number of features to be analysed by removing features which are present in blanks 

in substantial levels. Finally, the intensity of the blank was removed from features which were also present in blanks, 
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although with an intensity of at least 5 times compared to the blank. This was done in order to correct for the variation 

in the background between batches and measurement series. Similarly to the IS-normalisation step, the decision of 

whether or not to apply this background removal is at the discretion of the operator who will chose based on the 

effect that this step has on the outputs. In the specific case of the data used here, the difference in results with and 

without background subtraction was minimal (i.e., overall the same features were prioritised based on their 

increasing trend over time).  

 

During these preprocessing steps, it appeared that some measurements needed to be excluded from the data set as 

they caused fatal errors, internal standards could not be found or did not cover a complete set. These were the 12 

measurements done on 17 June 2019, the 12 measurements done on 7 October 2019 and an extra sample from the 

IJsselmeer from June 2020. Currently, no information is available about why these samples could not be processed. 

More detailed discussions with HWL will be necessary to identify the source of these issues.  

 

Overall, 240 measurements were considered in the trend analysis, covering 60 samples. Below, an overview is given 

about how many features were detected in the different datasets. 

 

(Pre)processing statistics: 

1. Initial dataset consisted of 252 analyses. After removal of data which caused fatal errors (see above), 240 

analyses (i.e., chromatograms) were used.  

2. A total of 336,103 features were found. 

3. After filtering all features prior to 180 seconds, 5.28% was removed. Remaining: 318,009 features. 

4. After feature grouping, 22,547 groups were formed with an average of 12.4 features per group. 

5. After filtering all feature groups not abundant in all replicates: 242,541 features remained in 9398 groups. 

6. For all 60 samples, feature intensities were averaged and corrected for presence in the blank.  

7. Feature groups that were not present in any of the measurements after blank correction were removed, 

giving 6858 feature groups. 

o IJsselmeer: 5,482 feature groups 

o Lekkanaal-Rijn: 4,230 feature groups 

o Maas: 4,910 feature groups 
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3.5 Data analysis 

3.5.1 Principal component and hierarchical clustering analysis 

 

After pre-processing, in particular removal of features which occur also in blanks, there is still an important number 

of feature groups which makes the interpretation of the data very complex. Hence, more appropriate approaches 

need to be implemented to select features characterized by specific (temporal) patterns. Similarly to low-resolution 

data, HCA and PCA were used to visualize and detect features of interest.  

 

With respect to PCA, results obtained for high-resolution data were analogous to what was previously observed with 

GC-MS data, namely that it can be used to highlight the presence of groups of samples or, as shown in Figure 15, 

detect the presence of “outliers”. However, the immediate identification of which features are responsible for the 

separation might be less straight forward compared to the more visual approach offered by HCA and heatmaps.  

 

 
Figure 15: Example of PCA of the different samples, groups are generated based on sample location (as shown by the different colors). The x- 

and y-axis represent the first two dimensions and the black arrow represents the features which are responsible for the separation of samples 
along the first PC. In fact, as can be seen, there a few samples which can be differentiated from the rest of the dataset. In particular, there is a 
group of samples which shows substantially different values along with the first PC (Dim1). In this particular PCA plot, the amount of variance 

explained by the first principal components is very low (< 10%) due to the large number of features still present in the dataset and their 
variability. 

 

Similarly to what was done for GC-MS data, sample groups can be made and visualized using HCA and heatmaps, as 

shown in Figure 16. Here a cluster analysis using Pearson’s correlation and Ward.D2’s method for clustering were 

used to compute the illustrated heatmap. Because of the large variability in feature intensities, the latter were log-

transformed prior to HCA. However, compared to GC-MS data, there is an extremely large amount of features still 
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present in the data, which makes it difficult to distinguish specific features which might be of interest in a certain 

group. To facilitate the analysis of this large amount of data, it is possible to perform the grouping not between 

samples but between features, as is shown in the following Figure 17. In this case, the operator can more easily 

observe group of features which occur in specific samples and can more easily select them for further investigation. 

Finally, it is also possible to combine both sample and feature grouping in a single heatmap, however this substantially 

complicates the interpretation of the results. In the PoC, the operator can toggle between the two types of heatmaps 

and can decide which one is more appropriate based on the data set under investigation.  

It should be noted, however, that due to time constraints, a dedicated algorithm to select features from the obtained 

heatmaps (as was done for GC-MS data) could not be implemented. As will be discussed below, it was decided to 

focus here on the implementation of an approach to select features characterized by increasing temporal trends. 

Nevertheless, the information about which features belong to which clusters is stored in the features list after HCA. 

Operators can hence filter relevant features based on the cluster they belong to and their intensity. In future 

developments of the PoC, a more automated selection algorithm can be implemented. Furthermore, HCA in 

combination with correlation testing (as described in the next section) could be implemented in future as an 

additional or alternative approach to detect and select features showing (increasing) temporal trends (18). 

 

 

 

 

 

 
Figure 16: Heatmap of hierarchical cluster analysis performed on samples from the river Meuse. The x-axis represents the different features and 
the colour illustrates their intensity (after log-transformation) while on the y-axis samples are being grouped based on similarities in their features 

(occurrence and intensity).  
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Figure 17: Heatmap of hierarchical cluster analysis performed on samples from the river Meuse. Contrarily to the previous plot, the x-axis here 

represents samples, while the y-axis illustrates groups of features. This allows to group features based on their occurrence (or absence) in certain 
samples and allows to analyse multiple features at the same time instead of having to look at individual ones as is the case in Figure 16. For 
example, it appears clearly that samples 01 and 02 are both characterized by the presence of two groups of features, and it is more 

straightforward for the operator to determine which these are and to investigate them further. Additional information such as the m/z, retention 
time and cluster number of the features was added to this plot.  

 

3.5.2 Outcomes and perspectives 

The above examples show how HCA and PCA can be implemented in the LC-HRMS data analysis workflow. Based on 

the obtained results, the operator can select the relevant feature and extract further information like in the approach 

for the GC-MS dataset. As discussed above, PCA appears to be more appropriate to rapidly detect outliers while HCA 

can be more easily used to detect groups of features differentiating sample groups. Nevertheless, it remains 

important that operators understand how the PoC is built and get accustomed to working with it (as well as getting 

used to the data itself). Only by gaining experience with this kind of tool will it become possible to easily detect 

anomalies and identify the features which are causing them.  

3.6 Trend analysis 

Various studies reported in the literature have applied trend analyses to NTS data using various techniques. These 

techniques range from relatively simple (linear regression analysis (19), Spearman’s rank correlation coefficient (20), 

Mann-Kendall correlation coefficients (21), time-trend ratio’s (20) and rarity scores (22)) to more complex 

approaches like hierarchical clustering (23) and multivariate empirical Bayes approach combined with Hotelling T2 

(24). The most suitable approach depends on the shape of the trend, namely whether it is monotonically increasing 

or decreasing, or nonmonotonic. Regression analysis can be applied if the trend appears to be linear and a trend line 

can easily be fitted (19). Otherwise, non-parametric tests can be applied, such as Mann-Kendall or Spearman’s rank 

correlation tests. The latter are more suitable to test for the presence of monotonic trends which may not be linear. 

Both tests are similar, however Mann-Kendall correlation test is generally considered more robust. The case of 

nonmonotonic trends (i.e., that both increase and decrease over time) was not covered in the current workflow. 

 

In the context of this work, a multistep approach was developed using four different techniques to detect the 

presence of trends. This consisted of linear regression analysis using a linear model and a log-linear model, and two 
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similar non-parametric tests, i.e. Mann-Kendall correlation coefficient and Spearman correlation coefficient. 

Regression analyses are used to determine if the estimated slope of the regression line is different from zero and its 

sign will provide an indication about whether the observed trend is increasing or decreasing. Hence, the obtained p-

values and slopes can be used to determine if the data exhibits a linear trend. In the case of the non-parametric tests, 

a correlation (ρ), which ranges between -1 and 1, is calculated (together with a p-value to assess the significance of 

the observed correlation) to determine if a monotonic trend is present in the data.  

Initially, all four statistical analyses were applied to all feature groups that were present in at least three samples. 

This was chosen to ensure that enough data points were available to adequately determine the presence of a trend. 

Next, feature groups with a p-value < 0.05 in in the Mann-Kendall test were selected. These were then further filtered 

according to the calculated correlation (ρ), which should be a positive value, indicating an increasing trend. For the 

river Meuse samples, this resulted in 101 feature groups with increasing trends, as shown in Figure 18.  

 

 
Figure 18: Feature groups having a p-value below 0.05 for Mann-Kendall correlation coefficient and a positive ρ (n = 101). Only samples from the 

river Meuse were considered here. The blue arrow indicates one of the features which were selected for subsequent analysis (see below). AU = 
arbitrary units 

 

The feature group ‘M120_R355_1744’, (marked by the blue arrow in Figure 18) was subjected to a tentative 

identification attempt. The SIRIUS algorithm (embedded in patRoon) generated three possible formulas, whereas the 

GenForm algorithm (embedded in patRoon) generated one possible formula, namely C6H6N3, which was also present 

in the SIRIUS results. The most likely candidate (out of a total of 26) formed using MetFrag was 2H-benzotriazole, as 

shown in the left pane of Figure 19. A further comparison was made with the MassBankEU spectral library and the 

result of the comparison between the measured spectra and the one from the database is shown in the right pane 

of Figure 19. As can be seen, an almost perfect match between the two MS2 spectra was obtained, which is a strong 

indication that the selected feature is likely a benzotriazole-like compound. This example illustrates that the 

developed approach can be used to highlight features with increasing trends and that these can potentially be 

tentatively identified based on their MS2 spectra using existing libraries.  
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Figure 19: MS2 of feature group ‘M120_R355_1744’, the MetFrag annotation is given at the left (where the red peak represents the precursor 
and the blue peaks are the assigned peaks), and the comparison with a benzotriazole MS2 from MassBankEU (spectrum in blue, SPLASH splash10-
01b9-9400000000-79f1def14297918ce9e5) is given at the right. 

 

However, it should be noted that the trend analysis approach implemented here does not allow to take into account 

for seasonal effects, that might be misinterpreted as increasing (or decreasing) trends although they are not. In the 

future, more advanced time series analysis approaches and larger data sets covering longer time periods should be 

considered, in particular if long time series are to be included and analysed, as the impact of seasonal effects in these 

datasets might be substantial. In fact, considering the amount of time needed to formally identify a detected feature 

(i.e., purchase and analysis of reference material or, if the latter is not available, analysis using orthogonal methods 

such as NMR), one needs to be sure that the selected feature is really showing an increasing trend. However, except 

for trends, features being constantly present at the same concentrations, or features undergoing seasonal effects 

might be of interest as well.  

3.7 Outcomes of the validation and recommendations for using the PoC with high-
resolution data 

In the case of HRMS data provided by HWL, information about calamities that can be used for validation purposes, 

as was done for low-resolution data, was not available at the time of the development of the PoC. However, findings 

such as the one illustrated above (i.e., 2H-Benzotriazole) could be verified by comparing with results from targeted 

analysis (provided that the compound is included in routine monitoring conducted by HWL) and/or by comparing the 

retention time and MS2 spectra of the selected feature with that of a reference standard analysed by HWL with the 

same instrument. If possible, this exercise should be carried out for a selection of features of interest to confirm the 

accuracy of the obtained results.   

 

Similarly to what was recommended for the GC-MS data, a good balance has to be struck between the amount of 

data being analysed. Too large data sets might make the interpretation of the outcomes of the data analysis very 

complex due to the large number of features and/or samples. On the other hand, a too small data set might hinder 

the detection of calamities if these last multiple days or even weeks (in which case enough data before and after the 

calamity is required in order to detect the change in feature composition). Similarly, for the detection of trends, it 

might be useful to actually increase the number of samples measured and analysed, so that changing trends can be 

detected earlier and stronger inferences can be made about their significance. Hence, it remains the task of the 

operator to perform the analysis with different time windows, get acquainted with the data and ensure that features 

affecting water quality both on the long- and short-term can be detected using the developed PoC.  

 

 

http://www.google.com/search?q=splash10-01b9-9400000000-79f1def14297918ce9e5
http://www.google.com/search?q=splash10-01b9-9400000000-79f1def14297918ce9e5
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3.8 Perspectives for future applications 

A data analysis strategy was developed allowing to import, process, select and identify features detected by LC-HRMS. 

The approach was developed using data generated by a Bruker Daltonics instrument, however, it can be adapted for 

use with raw data from any manufacturer. Nevertheless, like for GC-MS data analysis, there are a number of aspects 

that will always need to be customized given that different laboratories or instruments will provide slightly different 

data. In particular, the following aspects will need to be customized prior to implementation of the PoC in another 

laboratory/on another instrument: 

 

1. Information about internal standards. Laboratories are likely to use different internal standards and/or 

methods, hence the retention time of internal standards needs to be retrieved and the normalisation step 

needs to be updated. Mass labelled reference standards are always to be preferred where possible.  

2. Information about methods used. Different method parameters (e.g., gradient, oven program, run time, 

injection volume and chromatographic column) will lead to different results, which might hinder the 

comparison of data from different methods. This issue can partly be solved by using retention time 

alignment, however, differences will most likely always exist between different methods/laboratories.  

3. Availability and usability of blank samples. This PoC involves the subtraction of features that occur in blanks. 

This is a requirement for the method to work. However, in the case that all samples have been analysed 

simultaneously (i.e., same sequence), blank subtraction might be less relevant as the instrumental 

background is assumed to affect all samples equally.  
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4 Conclusion 

In the context of this project, two approaches were developed for the analysis of low- (GC-MS) and high-resolution 

(LC-HRMS) data. Whilst sharing an overall similar processing strategy, two distinct workflows were developed due to 

the intrinsic differences in the types and frequency of data used.  

 

From a technical perspective, the two approaches represent a proof of concept of what can be achieved with this 

kind of data and can serve as platforms that can be further expanded and improved as experience is gained by 

users/laboratories. In fact, further developments and improvements are possible and, in some cases, even needed. 

For instance, the method used for GC-MS analyses should be improved by adding blank samples which can then be 

used to reduce noise in the data. Concrete tests with data from other manufacturers should also be carried out to 

determine if any specific steps need to be included or modified. Furthermore, more advanced time series analysis 

approaches might be necessary for the detection of trends in larger data sets (e.g., multiple years’ worth of data). 

Finally, the development of a graphical user interface (GUI) should be also contemplated, although this often comes 

at the loss of flexibility in tweaking specific aspects of the data analysis, which are possible when working with a 

script-based approach. Despite the fact that analysing and interpreting mass spectrometric data remains a 

challenging task that requires an experienced operator, in particular when trying to formally identify selected 

features, the developed approach can help to substantially narrow down the number of features to identify by 

focusing only on those showing relevant patterns.  

 

From a practical perspective, the PoCs in their current state can be used by analysts/operators to analyse both historic 

and contemporary data (including newly analysed samples almost in real-time) to (i) rapidly detect the presence of 

samples deviating from normal patterns (e.g., due to a discharge or a calamity), (ii) detect the presence of new and 

potentially relevant features (i.e., chemicals), (iii) highlight differences across sampling locations and determine which 

features are responsible for these differences, (iv) detect features characterized by increasing (or decreasing if 

necessary) trends over time and, last but not least,  (v) tentatively identify features of interest by comparison with 

existing databases. As mentioned previously, to be able to efficiently carry out all the above mentioned data-analysis 

activities, users will need to acquire experience with the developed PoCs and these will have to be constantly updated 

and improved based on users’ feedback.  
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I Process of PoC development 

The development of the PoC involved a close collaboration between KWR and the laboratory of RWS and HWL, which 

provided the used data but also relevant contextual/methodological information. Furthermore, RWS organized 

regular meetings with the supervisory commission, during which KWR presented the progress and very detailed and 

constructive discussions took place. The feedback provided by the commission were integrated in the PoC, which 

were adapted according to the suggestions received. Finally, on the 31st of March 2022, a demonstration of the PoCs 

was given to laboratory personnel of RWS and Aquon (HWL could unfortunately not attend). This exchange was very 

interesting and allowed us to in particular identify future requirements for a smooth implementation of the 

developed PoCs.  

II Feedback from the Demo session 

On the 31st of March 2022, a demo of the PoCs took place at KWR. Frederic Béen (KWR), Nienke Meekel (KWR), Chris 

Lukken (RWS) and René Lindenburg (Aquon) participated. The demonstration focused on both developed approaches 

(i.e., GC-MS and LC-HRMS). Globally the exchange was very constructive and it appeared that the use of the PoCs for 

RWS could occur on the very short term (despite the lack of long term HRMS data). On the other hand, Aquon 

indicated that the lack if this type of instrumentation currently limits the amount of data available and hence the 

implementation of the developed PoC. Furthermore, some technical/detailed feedback about the PoC were given 

and these will be included in the final versions. Finally, the discussion was brought on the topic of the 

strategic/operational choices which need to be made to allow/facilitate the implementation of the developed 

approaches. These topics will need to be discussed with the supervisory commission as, together with technical 

aspect, are crucial for an efficient implementation of data analysis platforms in laboratories.  

III Internal standards GC-MS analyses 

List of internal standards which are used for quantification and quality control of the GC-MS samples. Three internal 

standards were not used for alignment since they could not be detected in multiple chromatograms. 

 
Internal standard Monoisotopic mass (Da) Bruto formula Used for Rt 

alignment? 

Toluene-d8 100.1128142 C6D5CD3 No 

Chlorobenzene-d5 117.0393616 C6D5Cl Yes 

1,4-Dichlorobenzene-d4 149.9941125 C6D4Cl2 Yes 

Naphthalene-d8 136.1128142 C10D8 Yes 

1,4-Dibromobenzene-d4 237.89308 C6D4Br2 Yes 

Terbuthylazine-d5 234.140807 C9D5H11ClN5 No 

Phenanthrene-d10 188.1410178 C14D10 Yes 

Chrysene-d12 240.1692213 C18D12 No 
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IV Internal standards LC-HRMS analyses 

Internal standards used by HWL in their LC-HRMS method and their average retention times (list was provided by 

HWL). 
Compound Bruto formula Retention time (min) Monoisotopic mass (Da) 

Metformine-d6 C4H6D6ClN5 2.64 171.1158 

Fenuron-d5 C9H7D5N2O 6.38 169.1263 

Bentazon-d7 C10D7H5N2O3S 6.47 247.1008 

Chloridazone-d5 C10H3ClD5N3O 6.6 226.067 

Carbetamide-d5 C12H11D5N2O3 7.81 241.1475 

Monuron-d6 C9H5D6ClN2O 8.13 204.0937 

Metobromuron-d6 C9H5D6BrN2O2 9.33 264.0381 

Atrazine-d5 C8H9D5ClN5 9.38 220.1252 

Chlorbromuron C9H10BrClN2O2 10.71 291.9614 

Chlooroxuron-d6 C15D6H9ClN2O2 11.1 296.1199 

Diclofenac-d4 C14H7D4Cl2NO2 11.46 299.0418 

Neburon C12H16Cl2N2O 11.81 274.064 

Diazinon-d10 C12H11D10N2O3PS 12.12 314.1638 

Metconazole-d6 C17H16D6ClN3O 12.29 325.1828 

Fenofibrate-d6 C20H15D6ClO4 13.43 366.1505 

Quinoxyfen-d4 C15H4D4Cl2FNO 13.77 311.0218 

 

V Overview of used packages 

V.I Used packages for pre-processing of SPE/GC-MS data 

To perform the various data processing described above, the following packages are being used: 

(i) rawrr, an R package for direct access to data from Thermo Fischer Scientific, this was used to read the 

data from the raw files. 

(ii) matrixStats (25), an R package with functions to perform operations on matrices, in this case used for 

binning; 

(iii) spectacles (26), an R package developed for processing spectroscopy data; this was used to perform 

Standard Normal Variate normalisation;  

(iv) pls (27), an R package for multivariate regression methods; this has been used to perform Multiplicative 

Scatter Correction; 

(v) signal (28), an R package for signal processing, this was used to perform Savitzky-Golay smoothing; 
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(vi) baseline (29), an R package for baseline correction of spectra, this was used to perform modified 

polynomial fitting and Gaussian weighting; 

 

As for the previous packages, all packages mentioned above are open source.  

 

V.II Used packages for exploratory analysis of SPE/GC-MS and LC-HRMS data 

To perform the exploratory data analysis, the following packages have been used:  

(i) Factoextra (30), an R package for the visualisation of multivariate data analysis; 

(ii) Pheatmap (31), an R package for the visualisation of hierarchical clustering; 

(iii) ggplot2 (32), an R package for visualization. 

 

V.III Used packages for the pre-processing and analysis of HRMS data 

(i) patron (15), an R package for workflows for mass spectrometry based non-target analysis; 

 

(ii) GGally (33), an R package for plotting and visualization of trends, extension to ggplot2; 

 

(iii) OrgMassSpecR (34), an R package for organic mass spectrometry, this has been used to calculate and 

visualize spectrum similarity of MS and MS2 spectra. 
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