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1. Inleiding 

In 1984 is in het kader van een speurwerkprogramma van de XU in Delft een 

rekenprogramma ontwikkeld voor het bepalen van de toegevoegde watermassa bij 

schuiven en kleppen. In [1] zijn de formules en de randvoorwaarden afgeleid, 

en is het rekenprogramma getoetst. 

Toegevoegde watermassa berekeningen zijn van belang bij het berekenen van 

krachten bij het versnellen en afremmen van punt- en klepdeuren van 

schutsluizen, bij trillingsberekeningen aan schuiven die door omstroming of 

lekstroming potentieel kunnen gaan trillen en bij golfbelasting op 

constructies. 

De berekening die met een kort rekenprogramma is uit te voeren (zie bijlage 2) 

kan op een PC worden uitgevoerd. Een variant hiervan is het gebruik van een 

spread-sheet programma. 

De spread—sheet methode heeft als voordeel het snel en eenvoudig programmeren, 

ook als de schuifpositie en waterstanden een aantal malen moet varidren. De 

programma-wijzigingen vergen geen programma ervaring. Nadeel van het spread- 

sheet is dat het rekenen zeer langzaam gaat. 

In het kader van TOW-kunstwerken is een IBM-P.C. variant ontwikkeld waarbij 

het programmeren wel enige ervaring vereist, maar wijzigen van de 

randvoorwaarden kan ook nu snel gebeuren, terwijl de rekentijd veel korter is. 

In deze nota wordt het programma met een korte toelichting gepresenteerd 

terwijl in bijlage 1 een artikel (nog niet ingediend) is bijgevoegd waarin de 

gebruikte formules zijn afgeleid, waarin tests staan betreffende de te 

bereiken nauwkeurigheid, en waarin voor een paar gevallen rekenresultaten 

staan vermeld. Het betreft hier berekeningen aan kleppen die op een vlakke 

vloer of op een drempel staan. 

De opstelling van de PC-versie, de berekeningen en de rapportering zijn gedaan 

door Dr. Ir. P.A. Kolkman en hebben plaats gevonden in de periode September 

tot november 1987. De IBM-versie (in Fortran) is opgesteld door ir. J. van 

Huystee. 



2. Samenvatting van de resultaten 

Zoals uit bijlage 1 volgt is het rekenprogramma getoetst. Afhankelijk van hoe 

groot het aantal elementen is waarin de schuif is verdeeld, is een 

nauwkeurigheid van een paar procent te bereiken. Er is in bijlage 1 een 

schatting te vinden van het aantal berekeningen en aantal iteraties dat nodig 

is om redelijk nauwkeurig de limietwaarde te bereiken. Tevens is een 

automatisch werkend stopkriterium ingevoerd om de berekening te stoppen. De 

nauwkeurigheid van de rekenresultaten is het grootst voor translerende 

schuiven waarbij de rand niet omstroomt (dus als de schuif boven water uit 

steekt). De nauwkeurigheid is het kleinst bij roterende kleppen met omstroming 

(zelfs bij 10 elementen is er nog 15% afwijking). 

De procedure die gevolgd is, is steeds geweest dat eerst een aantal 

berekeningen is uitgevoerd met een grof rooster (korte rekentijd) om de 

horizontale en vertikale uitgestrektheid te toetsen, en daarna wordt de 

berekening herhaald met een veel fijner rooster waarbij de PC bijvoorbeeld een 

nacht kan doorrekenen. Een twee maal fijner rooster betekent viermaal meer 

roosterpunten en een bijna viermaal groter aantal iteraties, dus 16x meer 

rekentijd. 

Gedetaillerde conclusies en rekenresultaten voor translerende en roterende 

kleppen zijn in bijlage 1 te vinden. 

Het programma in bijlage 2 is voorzien van een aantal opmerkingen als 

toelichting zodat het voor de lezer eenvoudig is het naar bevind van zaken te 

wijzigen afhankelijk van de schuif en drempelgeometrie en afhankelijk of het 

schuiftranslatie of rotatie betreft. 

Literatuur 

1 Kolkman, P.A.; "Opzet eenvoudig 2-dimensionaal rekenprogramma ter bepaling 

van de toegevoegde watermassa” Notities 1 en 2 uit de serie 

"Hydrodynamische massa", TH Delft, afd. CT vakgroep Waterbouw Sept-Dec '84 



Bijlage 1 

A Simple Scheme for Calculating 

the Added Mass of Gates 

by: 

P.A. Kolkman 

Senior Expert DELFT HYDRAULICS, 

Dept, of Rivers, Navigation and Structures, and 

Senior Research Officer Technical University Delft, 

Dept. Civil Engineering 

Summary 

In gate research and design, added mass calculation serves to establish reso- 

nance frequencies, vibration modes and the magnitude of flow-induced self- 

excitation and damping. The fluid boundary geometries vary strongly with gate 

position and water level variation. 

A relatively simple and versatile computation scheme is presented which is 

based on two dimensional potential flow without wave radiation. Only small am- 

plitude vibrations are considered. A square mesh grid is used and the poten- 

tial flow problem is solved by use of finite differences and the classical 

pointwise Gauss-Seidel iteration (relaxation) method. When the spread sheet 

type calculation is used boundary conditions and boundary locations can easily 

be varied; this makes it suitable for demonstration purpose. 

Presented are the boundary conditions, and how they are introduced in the com- 

putation scheme. The accuracy of the results is discussed for some cases for 

which analytical solutions exist: the vibrating strip and the vibrating wall. 

The number of relaxations needed, the use of overrelaxation and the introduc- 

tion of an automatic stop of the calculation are other elements of the paper. 

Running headline: Added-Mass of gates 
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1' Introduction 

Knowledge concerning the added mass of a body which is totally or partly sub- 

merged in liquid is needed for the calculation of: 

Resonance frequencies of structures. 

Coupling effects induced by the added mass and resulting in modification of 

the vibration mode or in coupled vibrations when several bodies are in vol- 

ved, 

- Wave forces (Morisson concept), 

- Wave shock and slamming pressures. 

Earthquake loads on dams, 

- Self-excitation magnitudes of vibrating gates. 

It is the author's experience that especially in gate research one has to deal 

with a number of problems where added mass calculations are needed in which a 

great number of geometries are involved. Even in designing one gate, the gate 

position and water level are variables. The calculation may usually be reduced 

to a two-dimensional problem. 
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Figure 1. Various geometries involved in gate vibrations problems. 

Represented in Figure 1 are: 

la The coupling forces induced by the added mass where vertical acceleration 

gives a horizontal force component and vice versa. In fact, each vibrating 

boundary element induces pressures at all the other boundary elements. The 

concept of added-mass matrix is found, among others, in Jennings [2] and 

Kolkman [4]. 
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1b A gate vibrating vertically so that the flow is periodically throttled. 

The combination of discharge fluctuations and the inertia of the water up- 

and downstream of the gate results in periodic forces acting on the gate 

which can cause either damping or self-excitation, [3] and [4]. 

1c A valve placed low in a dam, experiences a similar added mass effect as 

caused by flow inertia in lb. 

Id A vibrating flap gate inducing boundary displacements which are propor- 

tional to their distance to the hinge; the added mass effect becomes an 

added polar moment of inertia. 

Vibration calculations of gates are generally based on small amplitude assump- 

tions. Because the aim of these calculations is to prevent vibrations, it is 

important to know whether there is a tendency for instability at small ampli- 

tudes. Therefore, the added mass and the waterdamping (which at self- 

excitation conditions appears to become negative) are calculated for small 

vibration amplitudes. 

For gates wave radiation can be neglected, because at higher vibration fre- 

quencies the wave length of radiated waves is small compared to the gate 

dimensions and to the water depth. Even an extremely low 2 Hz frequency has 

a X of 0.4 m, which is small in relation to the size of sluice gates and 
wave 

other gates where free-surface flow occurs. An earlier analysis for a confi- 

guration as in Figure 1c, (see [3]) showed that, when for horizontally vibra- 

ting gates the value m2h/g (w = angular frequency, h = waterdepth) is above 

20, neglecting of wave radiation results in a deviation of the added mass of 

less than 5% from the high-frequency limit value. 

The author has shown before [3] that another factor is far more important than 

wave radiation for the water damping of vibrating gates, and this is the extra 

energy loss produced by the oscillating free flow passing over the gate or the 

flow through the gap under the gate. This extra energy loss is produced when 

the vibrating gate produces velocity fluctuations. These velocity fluctuations 

produce an extra head loss across the gap but they also produce extra pres- 

sures at the gate surface and their coupled effect can be calculated by using 

added mass calculations. 

The calculation was performed for a horizontally vibrating gate using a con- 

figuration like Figure lb. The calculation consisted of a superposition of 

three components: an added mass calculated under the assumption that flow 
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under the gate was zero (blocked), an added mass calculated for the condition 

wherein the gate did not vibrate but the flow under the gate varied periodi- 

cally, and the periodically varying local head difference across the gate re- 

lated (by the discharge equation) to the periodic flow variation. Each com- 

ponent included the use of a calculated added mass and coupling effect, neg- 

lecting wave radiation and even the influence of steady flow on the added mas- 

ses. Allthough the assumptions which were introduced in the calculation seem 

to be crude, the results were quite satisfying when compared to experimental 

results. 

When the cases of Figure 1 are considered, gate positions and water levels are 

variable, so geometries are manifold. On the other hand, great accuracy is not 

necessary; 5-20% inaccuracy is already a useful result, depending on its app- 

lication and other inaccuracies involved. 

The need was felt for the development of a versatile computer program that can 

be implemented on a personal computer, is easy to handle and wherein geo- 

metries can be quickly varied. The acceptable neglect of wave radiation and 

the limitation to calculations in two dimensions and for small-amplitude vi- 

brations only, result in simplifications similar to those introduced in some 

of the former methods, for instance using electric analogy with Teledeltos 

paper. 

Remark: 

When added-mass calculations are executed for offshore structures and 

ships, simplified calculations without wave radiation are not only applied 

for high-frequency vibrations but also for extremely low-frequency vibra- 

tions. In this case the free surface can be replaced in the computations 

by a rigid boundary. The second type of approximation, however, is not 

applicable to gates, because in half-space conditions, when the gate is 

nearly closed, a rigid free surface together with a finite water depth 

will result in infinite added-mass values which have no physical signi- 

ficance. 

There were several possibilities readily available for added-mass calcula- 

tions. The finite-element procedure, however, was considered to be too cumber- 

some for the great number of configurations needed, and with the boundary- 

element procedure the thin-plated gate caused an extra problem in finding the 

appropriate boundary-element distribution. 
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Olsthoorn [6] has shown the applicability of a spread sheet program for a 

two-dimensional potential flow calculation based on a relaxation method for- 

merly taught in applied mechanics, which was called the Hardy-Cross method and 

is more generally known as the Gauss-Seidel method [1]. Spread sheet program- 

ming on a PC can be done without much skill. It presents a matrix wherein each 

element can contain an equation into which data or equations from other ele- 

ments can be introduced. When one imagins the matrix elements to be elements 

of a fluid, the elements contain the same equation if they relate to the inner 

field and they contain different equations if they relate to one of the boun- 

daries. Corner points need still other equations. The reason why a spreadsheet 

program can so easily be programmed is that equations used at the flow boun- 

daries or in the inner flow can for each element be copied from the first ele- 

ment wherein this equation occurs and so the only thing needed is a set of 

equations for each of the type of elements. Further advantages are that varia- 

tions of water level and gate position can be easily varied, that no special 

programming skill is needed and that this program is well suited for demon- 

stration and educational purposes. A disadvantage of the spread sheet program 

is that it works relatively slow, which means that for demonstration purposes 

the number of computations (related to the number of grid points) should be 

limited. 

The author has not used the spread sheet program himself, but one of our tech- 

nicians has tried it out successfully and for the moment it seems that the 

program has essentially replaced the electric analog procedure which was for- 

merly used at Delft Hydraulics. The disadvantages of using a regular rect- 

angular grid, the neglect of wave radiation and the practical limitations on 

the number of grid points were accepted. For special checks more sophisticated 

programs are available. 

Before the program was applied to projects some research was done into its ac- 

curacy. To this and a faster working program based on the same numerical 

scheme was used. This research was necessary because the disadvantage of a 

rectangular grid is that flow around sharp corners is one of its critical 

points, and this occurs frequently in gates. 

This paper deals mainly with the boundary conditions, their introduction into 

the computation scheme and the accuracy tests. 
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2. Development of the basic equations 

Without discussing the details, the potential flow theory with neglect of wave 

radiation is used in the following for added mass calculation. (See also Lamb 

[5], Wendel [7] and many others) Special caution is necessary because poten- 

tial flow theoretically exists only in still water conditions and in small 

vibratory displacements. (In fact one assumes fixed contours and water dis- 

placement is introduced as source points) Application of the potential flow 

theory without wave radiation results in movements of the water elements which 

are all in phase and coupled with the vibratory movement of the structure. The 

amplitudes of the movement depend on the location. 

The great simplification of the potential flow calculation is that the dynamic 

equation can be left out as an explicite expression and that only the conti- 

nuity equation has to be fullfilled. 

The basic equations for potential flow are: 

3$/3s = - V (the bar denotes a vector) (1) 

($ = potential, V = fluid velocity and 3s = a streamline element) 

The velocity vector can be separated in x and y directions: 

V 
x 

V 

3$_ 

3x 

3$ 

And when an oscillatory flow field is introduced (see [5]) one obtians: 

p = p3iJ>/3t + constant 

(la) 

(lb) 

(2) 

This equation is again a simplification; because only small amplitude vibra- 

tions are considered, as mentioned before, V2 terms tend to disappear and are 

neglected. 

The boundary conditions are defined as follows: 

1. For non-vibrating walls or lines of symmetry in the flow field we have: 

V = - 
n 

3$ 

3n 

= 0 

(ii = vector perpendicular to the boundary) 

(3) 
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If one can expect symmetry in the flow field, only half the flow field 

needs to be calculated- On the line of symmetry equation 3 is valid (see line I 

in Figure 2). 

2. For vibrating wall the boundary conditions are: 

3$ 

3n 
= - V 

sn (4) 

(Vsn = component of the structural vibration velocity normal to the wall) 

3. For free surfaces or lines of antisymmetry in the flow field there is in- 

troduced 

$ = 0 (5) 

This follows from free surface wave theory when one assumes that gravity 

can be neglected. 

We introduce a grid with square elements. See for notations Figures 2 and 

4. The basic approach of the calculation here is the Gauss-Seidel itera- 

tion method [1] wherein the points are consecutively relaxed using the 

local continuity equation. The vibrating strip is used for demonstration 

of the proposed computation scheme, because in this case the exact solu- 

tion is known and accuracy can be checked. 

2a 

mi 01 

y =y *ln ut 

nr (♦-o) 

AX = ALJ 

I(Vn-O) 

nz(<t>-o) 

i 
1 Ay = A L. 

Figure 2. Representation of total grid wherein the sector enclosed by the 

boundaries I, II, III and IV is analysed. 
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The following elements of the computation are further considered: the signifi- 

cance of grid points, the chosen location of boundary elements, the boundary 

velocities (and resulting discharges) induced by the vibrating body, the re- 

sulting pressures and the definition of added mass. 

Each gridpoint represents an element of fluid with dimensions Ax and Ay 

and for simplicity there is chosen for Ax = Ay = AL. 

- The surfaces of the vibrating structure and of the other boundaries are 

schematized into elements of length AL which are either horizontal or 

vertical. To obtain a homogeneous approach of the computations, the loca- 

tion of these boundary elements is chosen in between the grid points (see 

Figures 3 and 4). 

n 

• • 

IA_ 

AQ, 

Aq 

   

h 

Aqh—£ 

ti 
V 

  v 
A 

Vh 

Aq h = AL Vh = AL Vs sina 

Aq v = A L Vv = A L Vs cos a 

Figure 3. Boundary discharges at arbitrary angles to the boundary and to the 

vibration velocity. 

The definition of added mass of a vibrating structure is the vibration- 

induced hydrodynamic force component in the direction of vibration divided 

by the acceleration vector ag, 

m = F/a (6) 
w s v 

The force is determined by integration of the pressure influences along 

the boundary. So to start with, the acceleration vector of the (gate) 

boundaries is defined for either a translation or a rotation movement. 

A harmonic oscillation of the boundary is introduced in the form of a 

velocity vector Z imt — . — J V = V e and V equals a /im. 
s s s s 
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At an inclined wall of a vibrating gate the equivalent discharge produced 

by the velocity of a vertical element is (see Figure 3): 

Aq, = V,AL = "V AL sina (7a) 
h h s 

and for a horizontal element 

Aq = V AL = T AL cosa (7b) 
v v s 

The potentials in the flow field are uniquely related to Vg and the ratio 

(4,/Vs) is calculated with procedures presented in paragraphs 3 and 4. At 

the gate boundary we find the ratio (((> /V )• 
s s 

The dynamic part of the pressures ps at the boundary are related by Equa- 

tion 2, to the boundary potentials: 

p = p 9(J) /3 = pirn <|> (8) 
s st s 

Because d> is related to V , which in turn equals a /iw, the pressure 
s s^ s 

pimij) is proportional to p as (the proportionality is found by means of the 

ratio d> /V ). This proportionality means that the added mass is indepen- 
s s 

dant of a) and that its use is not limited to periodic oscillations. This 

more general application for slamming calculations etc. is only adequata 

as long as gravity can be neglected. 



-10- 

3. Calculation of the potentials in the grid points 

The calculation of the potential in each grid element uses only its continuity 

equation. The stream function is left out of consideration. At each point dis- 

charges arrive from four directions (index L refers to left, R to right, U to 

up, D to down) and hence 

EAq = AqL + Aqy + AqR + AqD = 0 (9) 

When inner points are considered, the potential $ at the point x, y (see 

Figure 4) can be calculated when we consider 

AqL = VLAy = 
9$ 
9x Ay (10) 

VL is the horizontal velocity at the left boundary of the element. 

Because by approximation - = - A(j>/Ax = ($ $)/Ax 

and considering that Ax = Ay = AL, one obtains 

AqL = ~ $ (11) 

The distant boundaries (see Figure 2) are here represented by $ = 0, but this 

is an arbitrary choice and Vn = 0 would also have been possible. The deter- 

minant condition is that the boundary is far away. Now the calculation of the 

situation of Figure 2 can be restricted to one quadrant (symmetry and anti- 

symmetry lines are replaced by wall and free surface conditions). The resul- 

tant scheme is the one of Figure 4. 
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Figure 4. Definitions and localization of the elements. 

When considering Figure 4, wherein the inner elements (represented by grid 

points) are indicated by 1, the upper left element by 2, etc., we find by com- 

bining equations 9 and 11: 

1) for the inner elements 

$ = + $U + $R + (12) 

or 

$ -($ +$ ,+$, +$ )/4 
x,y x-l,y x,y-1 x+l,y x,y+l' (13) 

(in the notations of Fig. 4, x should be read as Nx and y as Ny) 

2) for the extreme upper left corner, with two boundaries for which $ = 0 and 

each having a distance ^AL from the grid point (in the centre of the ele- 

ment), one gets for the discharge coming from the left side: 

AqL = 
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Because $ = 0, this gives AqT = - 2 $. 

The same is found for Aqy and so, after application of the continuity 

equation 9, one finds: 

* = K + V/6 (14) 

3) for the left elements above the gate no equation is worked out here; see 

appendix. 

4) for the left elements at the right hand side of the gate (apart from the 

lowest one), Aq^ is directly derived from the gate movement, so 

$ = (4qL+ \+ $d)/3 (15) 

The complete set of equations can be found in the appendix. 

The boundary condition are in similar types of computation sometimes intro- 

duced by means of a set of virtual points outside the boundary. This method 

simplifies the calculations. It is not used here because thin—walled gates 

have real points at both sides of the boundary. 

The solution used is the classical Gauss—Seidel iteration (relaxation). The 

sequence of relaxation can best be repetitively executed "away from the vibra- 

ting gate", and so in our case from left to right, until a limit of sufficient 

accuracy is reached. A stop criterium is introduced in Section 5; it can be 

introduced as an automatic stop or as a signal. 
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4. Additional procedures 

A. Overrelaxation 

If the correction of the potential $ during relaxation of a single point is 

greater than whould follow from the equations derived in Section 3, the compu 

tation time can be considerably reduced. This procedure is known as SOR (suc- 

cessive overrelaxation, see [1]). 

Taking only equation 12 as an example, and introducing an overrelaxation fac- 

tor R (with R > 1), we get 

$ 
new 

$ . , + R($-$ , ,) 
old old/ 

So, equation 12 becomes 

(16) 

' R(h + 4U + *R + V/4 + ^ }„ld (17) 

Overrelaxation should not be too strong (say R = 1.5 to 1.7), otherwise the 

process is not continuously convergent and overshoot or even divergence might 

occur. When overrelaxation is applied, it is desirable to print at regular in- 

tervals an output (for instance the average value of boundary potentials) to 

check whether such an overshoot has occurred. 

Potentials at the boundaries of a vibrating body 

When the potentials in points 4 and 5 in Figure 4 have been found, the poten- 

tials at the gate surface are obtained by 

$strip $(4)or(5) + ^Aqs (18) 

The term ^Aqs is the correction of the potential over a distance ^AL and 

equals ^V^AL in the example of Figure 4. 
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5- The number of calculations. The introduction of a ”Stop"-criterion 

A. By performing a calculation of extremely long duration, one could judge 

the number of times the whole grid has to be relaxed before a certain 

accuracy is reached. Without overrelaxation, it appeared that the number 

of relaxations needed for the configuration of Figure 4 was of the order 

of 0.5 to 0.7 times the number of grid points before an accuracy of 1Z was 

reached. 

With overrelaxation such a simple expression could not be found but the 

number of iterations was easily reduced by a factor four. So, at a first 

approximation, for a grid of dimensions NH * Ny the total time of cal- 

culation becomes 

Time = At (N^ * ry2 0.7/4 (19) 

At is the time needed for relaxation of one single point. 

Because the number of grid points is squared, slow procedures like the 

spread sheet clearly have their limitations. 

B. There was a need, especially when using overrelaxation, to introduce an 

automatic criterion for stopping the calculation. This should be a non- 

dimensional criterion in the sense that it must be independant of the mag- 

nitude of the added mass obtained and of the number of iterations (the 

latter introduced as ’time" t). This is based on the fact that at the 

beginning of the calculations all the grid points start with a potential 

$ = 0. When the added lengths (being the potentials at the boundary of the 

vibrating body) are now considered, a convergent solution is generally ob- 

tained (provided no instability results from too large an overrelaxation). 

Figure 5 shows the definition of the "Stop" criterion. The absolute value 

sign is introduced because too much overrelaxation sometimes gives an 

overshoot after which the derivative dF/dt remains negative. 

To get an idea whether such a stop criterion is generaly applicable, it 

has been applied to three known analytical functions which converge to a 

limit value. These functions are 

Y = tanh t 
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Y = 1 e 
-t 

Y - (2/TT) tan 1 (Trt/2) 

The result of the calculation experiments concerning the average added 

length versus these analytical functions is shown in Figure 6. It is 

apparent that the (tan-1) function does not produce convergence as rapidly 

as the other two functions. The accuracy of the experiments is generally 

in accordance with or better than predicted by the two other functions. 

For all experiments S > 40 is applied. 

local slope = d F/dtN 
F (t) 

/ 

limit 

/ stop criterion = «^|(F/t)/(dF/dt)| > S | 

average slope - F/t 

-> time 

Figure 5. Definition of the Stop criterion, using a parameter S. 

107, V 
ret 

tan 
/ Tl 
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► S 
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experienced 

Figure 6. Stop experiences and theoretical values of the error for known 

asymptotic functions. 
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6« Accuraey check for computations of dams and for strips in infinite water 

For a strip in infinite water, the analytical solution of Lamb [5] can direc- 

tly be applied. The first accuracy check is for the total added mass per unit 

of length and the second for the maximum local pressure. For half the total 

added mass, situated at one side of the strip, we get 

m
w = 7 P

r2 (20) 

in the following the added length L is used to represent the pressure distri- 

bution (pressure = pL x acceleration). For a strip with width 2a in infinite 

water, the radius of the circle encompassing the added water mass equals a, so 

R = a. In the example of Figure 7 we have devided the strip width in 5 ele- 

ments (so N = 5); the average added length of the lowest element we define 

I ♦ H = R/5 

Us = (I♦1) 5/R 

L5/R = (V2 R2 sin cos <p ♦ V2 R2 'P) 5 / R2 

L5/R = (5/2) (sin <p cos ip ♦ tp) 

^fq/R = ( n/2 ) (sin ip cos tp-up ) 
with |p = sin-1 (N*1) 

  —► L (added length) 

Figure 7. Theoretical value of the average added length at the lowest strip 

element. 

A second check is the L for the lowest element. In the theoretical solution 

the pressure distribution is represented by a quarter of a circle. The average 

pressure at the lowest element is, according to Figure 7, a little lower than 

radius R. 

In the other case, that of a dam, the strip width (a) is equal to the water 

depth and the solution found by Westergaard [8], but recalculated by Kolkman 

[3] is 

00 

^max^a = I [sin(mr/2)]/n2 = 0.743 (n is an odd integer) (21) 

as Lr 

/ 

/ 

/ 

/ R/5 I 
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'/a 

The height-average value appears to be 

oo 

Lav/a = C16^3) l [sin2 (nu/2) ] /n3 = 0.543 (n is an odd integer) (22) 
n=l 

No correction factor is introduced for the finite height of the last element 

because there is no analytical solution available. 

1.0 

s/v= v3^ 0.9 
Nc = 7 

- NCTIO   0.8- 

.^NC=4 
S/V=

2
/3 Ns = 14 

  Nc = 2 0.7 

Ns= 3 

 sr Ns=10 
20 

0.5 

> H/V 

S/V= 1 

H 

X 

V 

K— 

 0_=p  

l<t)=o <J>=0| 
I 

m Vn —> 

/////// 

I 

I 

Vn=0 
////// 

Figure 8. Effect of the grid width relative to the grid height. 

A number of calculation results for horizontal water zones of varying width 

are summarized in Figure 8. The symbols used in this figure are V and H for 

the vertical and horizontal dimensions and S for the width of the strip which 

vibrates horizontally with a velocity Vn. It is obvious from the figure that a 

requirement for the infinite water condition is 

H/V > 2, 

The error for the smaller S/V ratios is not great even when H/V = 1. 
(23) 

Figure 9 shows that the water depth should be about 4 to 5 times the strip 

width to permit calculation of the infinite depth solution. The error due to a 

limited number of strip elements has then about reached its limit value. 

An analysis of the influence of the limited number of strip elements (N) on 

the results was made for the condition V/S = 4. 

The pressures thus calculated were compared with the ones which could be 

analitially calculated. 
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2C °/ 
Ns - 4 elements 

16 

average 

12 
-error 

under 

► V/S 

H 

T r 
i 

A 2 
i S with Ns = 4 

v s'? / s ;s/ //////>, 

Figure 9. Effect of the water depth to strip width ratio on the error. 

In numerical test runs it was found that the calculated added length appeared 

to be too great; the result was as if the strip was (0.3 AL) too wide. For the 

average length this doubles the error; or better the calculated added mass per 

unit length is given by the equation 

m 
w 

p(a + 
0.3 a^ 

N > 4 (24) 

For instance, with 5 elements L is 6% too large and L is 12% too large. 
max av 0 

For a strip width equal to the water depth (the Westergaard problem of a dam 

at earthquake conditions), the error of the average added length apears from 

numerical experiments to be (N~2). So, with a vision into 5 elements the error 

is 4%. 

The much lower error whit a "dam" is probably due to the absence of a sharp 

plate edge where the water has to pass at extremely high velocities. At edges 

with flow around them, the applied rectangular grid is in fact too coarse and 

this will hamper the flow. Tests made with a resistance correction at the last 

element show that results there can easily be influenced. Initially it had 

been the intention to give a recipe for this correction, but results proved 

not to be sufficiently consistent. 
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i _|Q1 t 

0 = 0 

A 

(f) : 0 

0 = 0 

H 

4> = o 

Rotating strip, height a 

Nc 

I /pa4 

P 

30 

60 

0,120 

20 

40 

0,120 

10 

20 

0,120 

30 

60 

0,115 

10 

25 

40 

0,111 

<P = 0 

<t) = 0 

r 
Rotating flap, height a 

NS 

% 
I /pa4 

P 

10 

30 

0,107 

10 

25 

0,101 

10 

40 

0,101 

10 

40 

0,085 

0 = 0 

0 = O 

45 

H 

0 = 0 

0 =0 

135 

7777777 77777777 

Rotating flap, length a 

N, 

N ■ 

ip/pa4 

10 

40 

0,176 

15 

50 

0,172 

Rotating flap, length a 

N„ 

N, 
H 

fp/pa4 

20 

0,093 

10 

40 

0,089 

15 

60 

0,089 

a = length of the flap gate 

%* %» = number °f elements. 

Ip = polar moment of inertia per unit of width 

Figure 10 Computation results for various situations. 
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7• Computation results for various configurations 

In Figure 10 the results of computed added mass for various rotating flap 

gates are presented but now this mass is expressed in terms of a polar moment 

of inertia. In the upper figure some computation results with a strip in ample 

water are presented with potential $ = 0 at the horizontal axis of symmetry. 

This results can be directly compared with the results found with Lamb's ana- 

lytical solution [5] of a rotating strip with width 2a. 

!? = 32 pa4 = °-098 pa4 (25) 

It has been found that for rotating strips errors are greater than in the case 

of translating strips, probably because flow around the edge is relatively 

stronger at rotation. 

Without further check it is assumed that the errors are much smaller for a 

rotating flap gate; because its cuts the waterlevel no flow goes around a 

edges. 
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8. Conclusions 

The proposed procedure for the added mass calculation, using the spread sheet 

method, is easy and the desired versatility is achieved. The calculation time 

can be estimated and the Stop procedure is effective. With overrelaxation, 

used to shorten the calculation time, a check is needed on whether the solu- 

tion is stable and reached without an overshoot. Accuracy tests are presented 

and they show that for an accuracy of the order of 10% and for relatively sim- 

ple test configurations the required number of grid points remains reasonably 

small. 
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Symbols 

a 

a 
s 

I 
P 

L 

m 
w 

N
H 

Nv 

NS 

P 

R 

S 

t 

V 

V 
_n 
V 
s 

V 
_sn 

V 
v 

x 

y 

y 

AL 

a 

Aq 

At 

$ or $(x,y) 

A$ 

P 

U) 

strip width 

acceleration vector 

added polar moment of inertia 

added length 

added mass 

number of grid points in horizontal sense 

number of grid points in vertical sense 

number of elements in vibrating strip 

pressure 

overrelaxation factor (with R > 1) 

parameter used in the stop criterion 

time 

velocity (vector) 

velocity component normal to boundary 

vibration velocity of the structure 

velocity component normal to gate boundary 

horizontal velocity component 

vertical velocity component 

horizontal distance in metre or in number of points 

vertical distance in metre or in number of points 

vibrational displacement 

mesh width 

gate angle 

discharge per element 

computation time of a single calculation 

potential 

potential step 

fluid density 

angular vibrational frequency 

(m) 

(m s~2) 

(kg m2) 

On) 

(kg) 

(Pa) 

(m s-1) 

(m s~l ) 

(m s-1) 

(m s-1) 

(m s-1) 

(ms1) 

(m) 

(m) 

(m2 s-1) 

(s) 

(m2s-1 ) 

(m2s-1 ) 

(kg m-3) 

(rad s-1) 

Indices L, R, H and D refer to left, right, up and down. 

Index n refers to direction normal to boundary. 

Index s refers to the boundary of the gate. 
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Appendix 

The set of potential equations to be used for the conditions of figure 4, 

where the inner elements are marked with (1), the upper left corner element 

with (2), etc. 

The indices L, R, U, and D refer to "left", "right", "up" and "down", respec 

tively 

1) the inner elements (see Equation 12): 

<t> = (4>L + (fly + <j>R + <I’d)/4 

2) the left corner element at the top: 

two boundaries have <f> = 0, see equation 14. 

<|> = (<}>R + <j>D)/6 

3) the left elements above the gate: 

4> = (4^ + ^ + 

4) the left elements at the gate (apart from the lowest one) where 

discharge Aq^ is introduced by the gate movement: 

<(> = (AqL 
+ ‘♦’u + 4>R + 

<t’D)/
3 

5) the left corner element, at the bottom, with Aq introduced by the gate 
Li 

and AqD = 0: 

<j> = (AqL + ‘fry + 4>r)/
2 

6) the elements at the bottom where Aq^ = 0: 

<f> = (<f>L 
+ ‘Pu + <Pr)/3 
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7) the right corner element at the bottom: 

<J> - (<pL + <pu)/4 

8) the elements at the right, except the corner elements: 

<|) - ((|>L + (fiy + 4>d)/5 

9) the upper right corner element: 

<)> ' (<t>L + 't’y)/6 

10) the element at the water surface, except the corner elements 

<t> - (<}>L + <)>R + <t>D)/5 
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Bijlage 2 Rekenprogramma en voorbeeld berekening waarbij een vertikale klep 

op een vlakke bodem staat en een roterende trilling uitvoert 

$ DEBUG 

Programmanaam : ADD-MASS.FOR 

C 

C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

10 

Datum : 01-10-1987 

Beschrijving : Berekening van toegevoegde watermassa 
met behulp van potentiaal theorie in 
combinatie met de relaxatie methode. 

Variabelen : OR = overrelaxatie 
SH = schuifhoogte 
WD = waterdiepte 
HU = horizontale uitgestrektheid 
ES = eindstop 
SD = schuifdebiet 
PT = potentiaal 
OP = oude potentiaal 
NP = nieuwe potentiaal 
TD = tijd 
DK = druk 
MM = moment 
VM = vorig moment 
I = teller 
X = nummer knooppunt X-richting 
Y = nummer knooppunt Y-richting 

WN = waar/niet-waar tuimelaar 

Data 

REAL OR, TD, ES, MM, VM, ST, OP, NP 
INTEGER SH, WD, HU, I, X, Y 
LOGICAL WN 

Arrays 

REAL DK(30), PT(100,30), SD(30) 

Beginwaarden invoeren 

OR = 1.5 
SH = 6 
HU = 60 
WD = 30 
ES = 50.0 

Schuifdebiet lineaire verdeling 

DO 10 I = 1, SH, 1 
SD(I) =1-0.5 
CONTINUE 

Algemene 
informatie 
programma 

data declaratie 
(dimensie arrays 
afhankelijk van 
grootte rooster) 

invoer via 
scherm 

debietverdeling 
voor rotatie van 
schuif q = y .Ay.m 



c Beginwaarden 

1 = 0 
VM = 0 beginwaarden 

C Lus 

20 1 = 1 + 1 

DO 50 X = 1, HU, 1 

DO 40 Y = 1, WD, 1 

IF (X .EQ. 1 .AND. Y .EQ. 1) THEN 

NP = (SD(1) + PT(2,1) + PT(l,2))/4 

GOTO 30 

OP = PT(X,Y) toekennen waarde 
van potentiaal 

afhankelijk van 
ligging punt in 

geometric 

ENDIF 

IF (X .EQ. 1 .AND. Y .EQ. WD) THEN 
NP = (PT(X+1,Y) + PT(X,Y-l))/6 

GOTO 30 

ENDIF 

IF (X .EQ. HU .AND. Y .EQ. 1) THEN 

NP = (PT(X-l.Y) + PT(X,Y+l))/6 
GOTO 30 

ENDIF 

IF (X .EQ. HU .AND. Y .EQ. WD) THEN 

NP = (PT(X—1,Y) + PT(X,Y-l))/6 

GOTO 30 

ENDIF 

IF (X .EQ. 1 .AND. Y .LE. SH) THEN 
NP = (PT(X,Y+1) + PT(X,Y-1) + PT(X+1,Y) + SD(Y))/3 

GOTO 30 > ' \ 

ENDIF 

IF (X .EQ. 1 .AND. Y .GT. SH) THEN 
NP = (PT(X,Y+1) + PT(X,Y—I) + PT(X+l,Y))/5 

GOTO 30 

ENDIF 

IF (X .EQ. HU) THEN 

NP = (PT(X-1,Y) + PT(X,Y+l) + PT(X,Y-l))/5 

GOTO 30 
ENDIF 

IF (Y .EQ. 1) THEN 
NP = (PT(X-1,Y) + PT(X+1,Y) + PT(X,Y+l))/5 

GOTO 30 

ENDIF 



IF (Y .EQ. WD) THEN 
NP = (PT(X-1,Y) + PT(X+1,Y) + PT(X,Y-1))/5 
GOTO 30 
END IF 

NP = (PT(X-1,Y) + PT(X+1,Y) + PT(X,Y—1) + PT(X,Y+l))/4 

PT(X,Y) = OP + (NP - OP)*OR 

CONTINUE 

CONTINUE 

MM = 0 

DO 60 J = 1, SH, 1 
DK(J) = PT(1,J) + (0.5 * SD(J)) 
MM = MM + ((J - 0.5) * DK( J)) 
CONTINUE 

WRITE (*,130) MM 
WN = 'FALSE' 

IF (VM .NE. MM) THEN 
ST = ABS((MM/l)/(MM-VM)) 
ELSE 
ST = 1000 
ENDIF 

WRITE (*,140) ST 
WRITE (*,150) I 
WRITE (*,160) 

VM = MM 

IF (ST .LE. ES) THEN 
GOTO 20 
ENDIF 

Uitvoeren resultaten 

WRITE (*,180) 
WRITE (*,130) MM 
WRITE (*,150) I 
WRITE (*,140) ST 
WRITE (*,*) ' ' 

berekening druk 
en moment 

uitvoer 
rekenslagen 

stopcriterium 

uitvoer 
resultaten 

DO 70 J = 1, SH, 1 
WRITE (*,170) J, DK(J) 
CONTINUE 



C Formatering 

80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
C 

FORMAT (' Factor over-relaxatie [1.5] : ' ) 
FORMAT (' Aantal roosterpunten schuif : ' ) 
FORMAT (' Aantal roosterpunten in X-richting: ' ) 
FORMAT (' Aantal roosterpunten in Y-richting: ' ) 
FORMAT (' Grootte stopcriterium iteratie : ' ) 
FORMAT (' Moment = ' F10.3) 
FORMAT (' Stopparameter = ',F10.3) 
FORMAT (' Aantal iteraties = ’,16) 
FORMAT ( '    ) 
FORMAT (' Wandpotentiaal element ',13,' = ' F10.3) 
FORMAT (/' RESULTATEN '/' '/) ’ 
Einde 

END 

formatering 



C:/FOR>Add-mass 
Factor over-relaxatie [1.5] : 1.5 
Aantal roosterpunten schuif : 6 
Aantal roosterpunten in x-richting : 60 
Aantal roosterpunten in y-richting : 30 
Grootte stopcriterium iteratie : 50.0 

Moment = 91.151 
Stopparameter = 1.000 
Aantal iteraties = 1 

Moment = 115.271 
Stopparameter = 2.390 
Aantal iteraties = 2 

Moment = 128.894 
Stopparameter = 3.154 
Aantal iteraties = 3 

Moment = 137.480 
Stopparameter = 4.003 
Aantal iteraties = 4 

Moment = 143.063 
Stopparameter = 5.125 
Aantal iteraties = 5 

Moment = 146.724 
Stopparameter = 6.679 
Aantal iteraties = 6 

Moment = 149.120 
Stopparameter = 8.890 
Aantal iteraties = 7 

Moment = 150.753 
Stopparameter = 11.545 
Aantal iteraties = 8 

Moment = 151.953 
Stopparameter = 14.063 
Aantal iteraties = 9 

Moment = 152.876 
Stopparameter = 16.562 
Aantal iteraties = 10 

Moment = 153.592 
Stopparameter = 19.500 
Aantal iteraties = 11 

Moment = 154.156 
Stopparameter = 22.780 
Aantal iteraties = 12 

opdracht programme 

invoer programma 
via scherm 

rekenslagen 
programma op 
scherm 



154.608 
26.340 
13 

Moment = 
Stopparameter = 
Aantal iteraties = 

Moment = 154.974 
Stopparameter = 30.229 
Aantal iteraties = 14 

Moment = 155.274 
Stopparameter = 34.437 
Aantal iteraties = 15 

Moment = 155.524 
Stopparameter = 38.986 
Aantal iteraties = 16 

Moment = 155.732 
Stopparameter = 43.883 
Aantal iteraties = 17 

Moment = 155.909 
Stopparameter = 49.126 
Aantal iteraties = 18 

Moment = 156.059 
Stopparameter = 54.726 
Aantal iteraties = 19 

RESULTATEN 

Moment = 156.059 
Aantal iteraties = 19 
Stopparameter = 54.726 

Wandpotentiaal element 1 = 1.575 
Wandpotentiaal element 2 = 4.613 
Wandpotentiaal element 3 = 7.290 
Wandpotentiaal element 4 = 9.306 
Wandpotentiaal element 5 = 10.234 
Wandpotentiaal element 6 = 9.364 

rekenslagen 
programma op 
scherm 
(vervolg) 

uitvoer 
programma op 
scherm 

Roterende vertikale klep die op de bodem staat in ruimwater. 

De debieten worden ingevoerd volgens a> = 1, elementgrootte 1, dus 

M 
w ’Moment” 

P (aantal schuifelementen)4 
156,059 

0.1204 
64 





p.o. box 177 2600 mh delft the netherlands 


